

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	lighthouse 1.0.0 documentation

Lighthouse Service Discovery Tool

[image: Lighthouse]

Lighthouse is a service node discovery system written in python, built with
resilience, flexibility and ease-of-use in mind and inspired by Airbnb’s
SmartStack [http://nerds.airbnb.com/smartstack-service-discovery-cloud/] solution. Out of the box it supports discovery via Zookeeper [https://zookeeper.apache.org] with
cluster load balancing handled by an automatically configured HAProxy [http://www.haproxy.org].

To jump right in see the Getting Started page, or if you’d like to see
it in action check out the Examples page.

Overview

A lighthouse setup consists of three parts running locally on each node: a load
balancer, the lighthouse-writer script and (usually) the lighthouse-reporter
script.

[image: Diagram of a node]
In a Lighthouse setup, no node’s application code is aware of the existence of
other nodes, they talk to a local port handled by an instance of the load
balancer which in turn routes traffic among the various known other nodes.

This local load balancer is automatically updated when nodes come and go
via the lighthouse-writer script, which talks to the discovery method (e.g.
Zookeeper) to keep track of which nodes on which clusters are up.

The lighthouse-reporter script likewise talks to the discovery method, it is
responsible for running health checks on any services on the local node and
reports to the discovery method that the healthy services are up and the
unhealthy ones are down.

Development

The code is hosted on GitHub [https://github.com/wglass/lighthouse]

To file a bug or possible enhancement see the Issue Tracker [https://github.com/wglass/lighthouse/issues], also found
on GitHub.

License

Lighthouse is licensed under the terms of the Apache license (2.0). See the
LICENSE [https://github.com/wglass/lighthouse/blob/master/LICENSE] file for more details.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

Getting Started

Installation

Automatic

Lighthouse is available via PyPI [http://pypi.python.org/pypi/lighthouse], installation is as easy as:

pip install lighthouse

Note that when installed this way the example files found in the source repo are
not included. If you wish to use the examples, a manual install via the current
source tarball is your best choice.

Manual

First download the current tarball at lighthouse-1.0.0.tar.gz [https://pypi.python.org/packages/source/l/lighthouse/lighthouse-1.0.0.tar.gz], then:

tar -zxvf lighthouse-1.0.0.tar.gz
cd lighthouse-1.0.0
python setup.py install

Prerequisites

Python verison: Lighthouse runs on python versions 2.6 and greater, but is
better vetted on 2.7 and 3.4 specifically. Versions 2.6 and PyPy [http://pypy.org] are included
in the test suite but are less rigorously tested manually.

Required libraries: By default the lighthouse installation depends on

	Watchdog [https://pythonhosted.org/watchdog/] for monitoring changes to config files

	PyYAML [http://pyyaml.org] to parse the config files

	Kazoo [https://kazoo.readthedocs.org] to communicate with Zookeeper

	Six [https://pythonhosted.org/six/] to maintain python 2 and 3 compatibility

HAProxy: As of right now only HAProxy version 1.4 or higher, 1.3 might work
but is untested.

Platforms: Lighthouse is most extensively tested on Linux and Mac OSX but
should run just fine on any Unix-y/POSIX platform. Native windows use is
unsupported as UNIX sockets are required to control the load balancer, but a
setup with cygwin is theoretically possible.

Optional Extras

Redis plugins

Lighthouse includes a “redis” extra package that comes with a health check for
redis services. To install an extra, use square brackets when installing
lighthouse:

pip install lighthouse[redis]

Examples

At this point you should be ready to run the examples if you’ve downloaded
them. Simply run the start.sh script for the target example and then run
lighthouse-writer and lighthouse-reporter passing in the path to the
example directory. For more details on the included examples see
Examples.

Configuration

The next step will of course be customizing your own Configuration.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

Configuration

The lighthouse scripts are configured by passing in a root config directory which
contains individual YAML [http://yaml.org] config files and follows a certain layout:

<config dir>/
 |____logging.yaml
 |____balancers/
 | |____haproxy.yaml
 |____discovery/
 | |____zookeeper.yaml
 |____clusters/
 | |____webcache.yaml
 | |____pg-db.yaml
 | |____users-api.yaml
 |____services/
 | |____a_service.yaml
 | |____other_service.yaml

There are five types of config file:

	logging:

This file lives at the root of the config directory and its contents are
passed to the standard lib logging.config module’s dictConfig function.

Configuring Logging

	balancer:

Files that configure the locally-running load balancer(s). These live in the
balancers subdirectory. The project includes a plugin for HAProxy as a
balancer.

Configuring HAProxy

	discovery:

Discovery config files live in a discovery subdirectory, each
file configures a single discovery method with a name matching the filename.
The project includes a plugin for Zookeeper as a discovery method.

Configuring Zookeeper

	cluster:

Cluster config files are found under the clusters subdirectory and denote
services used by the local machine/node that should be watched for member
node updates.

Configuring Clusters

	service:

Each config file under the services subdirectory represents a local service
to be reported as up or down via the discovery method(s). These files include
configurations for a service’s health checks as well. The project includes
simple HTTP and Redis health checks.

Configuring Services

Note

Service vs. Cluster terminology: Think of a “service” as used in this
documentation as describing an individual service provided by the local
node/machine, a “cluster” as a description of a service consumed by the local
node/machine.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Configuration

Configuring Logging

The content of the logging config file is passed along to the standard logging
lib’s dictConfig [https://docs.python.org/2/library/logging.config.html#logging.config.dictConfig] method. Lighthouse does not verify the configuration itself,
but the contents should conform to the dict config schema since that’s what
the logging system expects.

Lighthouse does however provide two helper classes for logging: the
CLIHandler and the ContextFilter.

As an example, this file sends logs to stdout with the CLIHandler attached, as
well as to the local syslog system with added “program” context via the
ContextFilter:

logging.yaml

version: 1
disable_existing_loggers: False
filters:
 context:
 "()": lighthouse.log.ContextFilter
formatters:
 syslog:
 format: 'lighthouse: [%(program)s] [%(threadName)s] %(message)s'
handlers:
 cli:
 class: 'lighthouse.log.cli.CLIHandler'
 stream: "ext://sys.stdout"
 syslog:
 class: 'logging.handlers.SysLogHandler'
 address: '/dev/log'
 facility: "local6"
 filters: ["context"]
 formatter: 'syslog'
root:
 handlers: ['syslog', 'cli']
 level: "DEBUG"
 propagate: true

ContextFilter

A simple logging.Filter subclass that adds a “program” attribute to any
LogRecord`s that pass through it. For the `lighthouse-writer script the
attribute is set to “WRITER”, for lighthouse-reporter it is set to “REPORTER”.

Useful for differentiating log lines between the two scripts.

CLIHandler

Handy logging.StreamHandler subclass that colors the log lines based on the
thread the log originated from and the level (e.g. “info”, “warning”, debug”,
etc.)

Some example lines:

[2015-09-22 18:52:40 I][MainThread] Adding loggingconfig: 'logging'
[2015-09-22 18:52:40 D][MainThread] File created: /Users/william/local-config/balancers/haproxy.yml
[2015-09-22 18:52:40 I][MainThread] Adding balancer: 'haproxy'
[2015-09-22 18:52:40 I][Thread-3] Updating HAProxy config file.
[2015-09-22 18:52:40 D][MainThread] File created: /Users/william/local-config/discovery/zookeeper.yaml
[2015-09-22 18:52:40 D][Thread-3] Got HAProxy version: (1, 5, 10)
[2015-09-22 18:52:41 I][MainThread] Adding discovery: 'zookeeper'
[2015-09-22 18:52:41 D][Thread-3] Got HAProxy version: (1, 5, 10)
[2015-09-22 18:52:41 I][Thread-12] Connecting to zookeeper02.oregon.internal:2181
[2015-09-22 18:52:41 I][Thread-7] Updating HAProxy config file.
[2015-09-22 18:52:41 D][MainThread] File created: /Users/william/local-config/clusters/haproxy-web.yaml
[2015-09-22 18:52:41 I][Thread-3] Gracefully restarted HAProxy.
[2015-09-22 18:52:41 I][MainThread] Adding cluster: 'haproxy-web'

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Configuration

Configuring HAProxy

The configuration of HAProxy is one of the more complicated (read: flexible!)
parts of the Lighthouse system. Just about any setup can be accommodated, it’s
helpful to have an HAProxy config reference [http://cbonte.github.io/haproxy-dconv/] on hand.

Let’s start with an example:

haproxy.yaml

config_file: "/etc/haproxy.cfg"
socket_file: "/var/run/haproxy.sock"
pid_file: "/var/run/haproxy.pid"
bind_address: "127.0.0.1"
global:
 - "daemon"
 - "maxconn 40000"
 - "user haproxy"
 - "log /var/run/syslog local2"
defaults:
 - "balance roundrobin"
 - "timeout connect 10s"
 - "timeout client 20s"
 - "timeout server 20s"
stats:
 port: 9009
 uri: "/haproxy"
 timeouts:
 connect: 4000
 server: 30000

The only required configuration settings are the config_file,
socket_file, and pid_file but such a bare-bones setup is probably not what
you want. The main points of configuration will be the global and defaults
settings, where you can list any HAProxy config directives that will go under
those respective stanzas in the generated config file.

Note

If HAProxy is not currently running when lighthouse-writer tries to restart
it, HAProxy will be started automatically.

Proxies

Sometimes it can be useful to list straight-up proxies in the generated HAProxy
configuration. For example, if you have a 3rd-party partner API you talk to on
a whitelisted IP basis you would want a dedicated proxy machine with a known
IP that listens on a port and proxies to the business partner.

To facilitate such a use-case the HAProxy YAML config supports a proxies
setting. Each entry in the mapping under proxies is a separate named proxy
with certain settings requirements themselves.

For example:

haproxy.yaml

config_file: "/etc/haproxy.cfg"
socket_file: "/var/run/haproxy.sock"
pid_file: "/var/run/haproxy.pid"
bind_address: "0.0.0.0"
global:
 - "daemon"
 - "user haproxy"
proxies:
 business_partner:
 port: 1100
 upstreams:
 - host: "b2b.partner.com"
 port: 88
 max_conn: 400
 options:
 - "mode http"

This config sets up a “business_partner” proxy that takes traffic from the
local port 1100 and forwards it to a partner server on port 88.

Peers

A new feature available in HAProxy 1.5 and newer is the concept of peers [https://cbonte.github.io/haproxy-dconv/configuration-1.5.html#3.5].

When a node is reported as up and available, information about the HAProxy
instance that lives on the node is included along with it. This allows the
config file generator to list the peers of each cluster, allowing HAProxy to
coordinate cluster-wide statistics in what’s known as “stick tables” [http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#stick-table].

Note

This feature is automatically used and only available in HAProxy 1.5 and
newer.

Stats Listener

HAProxy comes with a built-in feature for serving up a status page with all
sorts of useful information. Each known backend and frontend is listed along
with their statuses and usage statistics (see the live demo on haproxy.org [http://demo.haproxy.org]
for an example).

To enable the feature for your HAProxy instance, include the stats setting
in your YAML config. A port to use for serving the page is required, check the
stats settings section for more detailed info.

Settings

	config_file (required):

This is the path of the HAProxy config file that will be automatically
generated by Lighthouse.

	socket_file (required):

The path to the UNIX socket file Lighthouse should use to communicate with
HAProxy.

	pid_file (required):

The path to the PID file for HAProxy.

	global:

Optional list of directives to put under the “global” stanza in the generated
HAProxy config file.

	defaults:

Optional list of directives to put under the “defaults” stanza in the generated
HAProxy config file.

	bind_address:

The address to bind to for the various ports HAProxy will listen on. Default
is “localhost”.

	meta_cluster_ports:

A mapping of meta cluster name to a port. This tells HAProxy to bind to that
port to handle traffic for the meta cluster.

	proxies:

Optional setting section for configuring simple proxies. Each of the proxy
entries have their own settings requirements, see Proxies Settings
below.

	stats:

Optional but recommended feature for having HAProxy serve a simple web page
with status and metrics info (see the live demo on haproxy.org [http://demo.haproxy.org] for an
example). This setting has further required settings that are listed below.

Proxies Settings

	port (required):

The local port to bind to and listen for traffic to proxy on.

	upstreams (required):

List of servers to proxy traffic to. If multiple servers are listed they’re
balanced with a round robin algorithm.

	bind_address:

Optional setting for the address to use when binding the local port. Defaults
to “localhost”.

	options:

A list of extra directive lines to include in the generated “listen” stanza
for the proxy.

Stats Settings

	port (required):

The local port to bind to and serve up the stats page with.

	uri:

Optional uri path for the page. For example if the port is set to 9009
and the uri set to “/haproxy_stats”, the HAProxy stats page would be available
at http://<machine address>:9009/haproxy_stats.

	timeouts:

Optional timeouts. These are a mapping from timeout name to value, the
only names recognized are connect, client and server.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Configuration

Configuring Zookeeper

The Zookeeper [https://zookeeper.apache.org] discovery method config is incredibly simple, there are two
settings and they are both required.

Settings

	hosts (required):

A list of host strings. Each host string should include the hostname and
port, separated by a colon (”:”).

	path (required):

A string setting denoting the base path to use when looking up or reporting
on node availability. For example, a path of /lighthouse/services would
mean that any services available would be found at the path
/lighthouse/services/service_name.

Warning

Altering the “path” setting is doable, but should be avoided if at all
possible. Whatever provisioning method is used to update the
zookeeper.yaml file is almost certainly going to leave many nodes out of
sync at least for a time. A situation where nodes don’t agree on where to
look for each other is indistinguishable from a large network outage.

Example

A simple example with a three-member zookeeper cluster and a base path:

discovery/zookeeper.yaml

hosts:
 - "zk01:2181"
 - "zk02:2181"
 - "zk03:2181"
path: "/lighthouse/services"

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Configuration

Configuring Clusters

Cluster configs are very simple, all that’s needed is a discovery method defined
by the key discovery and a section specific to the load balancer in use.

A simple web server example:

clusters/webapp.yaml

discovery: "zookeeper"
haproxy:
 port: 8000
 frontend:
 - "log global"
 backend:
 - "mode http"

In this example we’re using the Zookeeper discovery method and the HAProxy load
balancer. The balancer should listen locally on port 8000 and the HAProxy
frontend definition should include the log global directive and the backend
definition should include the mode http directive.

Meta-Clusters

In some use-cases a service might actually be composed of several clusters, with
special rules for routing between them. For example, a RESTful api that routes
based on URL where /api/widgets hits the “widgets” cluster and /api/sprockets
hits the “sprockets” cluster.

To do this, the widget and sprocket cluster configs would use the meta_cluster
setting and provide the “ACL” rule for how they’re routed.

clusters/widgets.yaml

discovery: "zookeeper"
meta_cluster: "webapi"
haproxy:
 acl: "path_beg /api/widgets"
 backend:
 - "mode http"

clusters/sprockets.yaml

discovery: "zookeeper"
meta_cluster: "webapi"
haproxy:
 acl: "path_beg /api/sprockets"
 backend:
 - "mode http"
 - "maxconn 500" # maybe the sprockets cluster is on limited hardware

You’ll note that neither of these actually list which port for the load balancer
to listen on. Rather than have each cluster config list a port and hope they
match, we set the port via the meta_clusters setting in the load balancer
config.

haproxy.yaml

config_file: "/etc/haproxy.cfg"
socket_file: "/var/run/haproxy.sock"
pid_file: "/var/run/haproxy.pid"
meta_clusters:
 webapi:
 port: 8888
 frontend:
 - "mode http"

This will tell HAProxy to listen on port 8888 locally and serve up the
meta-service, where requests to /api/widgets hit the widgets cluster and
requests to /api/sprockets get routed to an independent sprockets cluster.

Note that it also adds the “mode http” directive to the meta cluster’s frontend
definition, a requirement for “path_beg” ACLs. The “frontend” portion of a
meta_clusters is a list of any frontend directives that should be added to
the meta cluster’s stanza.

Settings

	discovery (required):

The name of the discovery method to use for determining available nodes.

	meta_cluster:

Name of the “meta cluster” this cluster belongs to. Care must be taken such
that the meta cluster has a port set in the load balancer config file.

HAProxy Settings

The following settings are available for the haproxy setting of a cluster.

	port:

Specifies which port the local load balancer should bind to for communicating
to the cluster. Not applicable to meta-clusters.

	acl:

Defines the ACL routing rule for a cluster who is a member of a meta-cluster.
Not applicable to regular non-meta clusters.

	frontend:

Custom HAProxy config lines for the frontend stanza generated for the
cluster. Lines are validated to make sure the directive is a legal one for
a frontend stanza but other than that anything goes.

	backend:

Custom HAProxy config lines for the backend stanza generated for the
cluster. Lines are validated to make sure the directive is a legal one for
a backend stanza but other than that anything goes.

	server_options:

Extra options to add to a node’s server directive within a backend stanza.
(e.g. slowstart if nodes in the cluster should have their traffic share
ramped up gradually)

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Configuration

Configuring Services

Service configs have more required settings than most other configurable items,
but are still fairly easy to define. Each service config must define the port
to use for communicating with the service, as well as the discovery method used
for reporting and the health checks to use to determine the service’s
availability.

For example, a simple redis cache service:

services/cache.yaml

port: 6379
discovery: "zookeeper"
host: "127.0.0.1"
checks:
 interval: 3
 redis:
 rise: 2
 fall: 1

This service runs on the default redis port of 6379, uses the
Zookeeper discovery method and the redis health check. The
check is performed every three seconds, the check would have to pass twice for
the service to be considered “up” and fail only once to be considered “down”.

Settings

	port/ports (required):

Port(s) that the local service is listening on. If listing multiple ports,
the ports setting must be used. For single-port services either port
or ports (with a single entry) will do.

	discovery (required):

Discovery method to use when reporting the local node’s service(s) as up or
down.

	checks (required):

A list of health checks to perform, which will determine if a service is up
or not.

	host:

Optional hostname to use when communicating with the service. Usually
“localhost” or “0.0.0.0”, defaults to “127.0.0.1” if not specified.

	metadata:

An optional mapping of data to send along when reporting the service as up
and available. Useful for providing extra context about a node for use in
a balancer plugin (e.g. denoting a “master” or “slave” node).

Health Check Settings

	interval (required):

The time (in seconds) to wait between each health check. This setting belongs
under the “checks” setting.

	rise (required):

The number of successful health checks that must happen in a row for the
service to be considered “up”. This setting belongs under individual health
check configs.

	fall (required):

The number of failed health checks that must happen in a row for the service to
be considered “down”. This setting belongs under individual health check
configs.

Included Health Checks

The Lighthouse project comes bundled with a handful of health checks by default,
including two basic ones for HTTP-based services and lower-level TCP services.

HTTP

The HTTP health check performs a simple request to a given uri and passes if
the response code is in the 2XX range. The HTTP health check has no extra
dependencies but does have a required extra setting:

	uri (required):

The uri to hit with an HTTP request to perform the check (e.g. “/health”)

TCP

The TCP health check can be used for services that don’t use HTTP to communicate
(e.g. redis, kafka, etc.). The health check is configured to have a “query”
message sent to the service and an expected “response”.

	query (required):

The message to send to the port via TCP (e.g. Zookeeper’s “ruok”)

	response (required)

Expected response from the service. If the service responds with a different
message or an error happens during the process the check will fail.

Optional Health Checks

Redis

Sends the “PING” command to the redis instance and passes if the proper “PONG”
response is received. The Redis health check plugin has no extra config
settings. This optional plugin requires Lighthouse to be installed with the
“redis” extra:

pip install lighthouse[redis]

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

Examples

Example use-cases of lighthouse live in the examples directory. There are a
handful of Docker [https://docker.com] images with various lighthouse setups that can be launched
to create small clusters.

Each example also makes use of a “client” container that consumes the resulting
services and exposes requisite ports that can be hit to show off just how the
clusters handle traffic.

Examples List

	Simple Web Cluster

	API Meta-Cluster

Setting Up

To start with you’ll need Docker set up properly. How to do that depends on
your OS and is beyond the scope of this documentation but luckily the folks at
Docker provide some of their own [https://docs.docker.com/installation/#installatio].

Once you have docker up and running, creating the example images is as simple as:

make

This shouldn’t take too long, and once it’s done you should have a handful of
example docker images with names starting with “lighthouse.examples”:

[examples] $ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
lighthouse.examples.client latest 1bc85bf377a7 52 minutes ago 436.4 MB
lighthouse.examples.sprockets latest e8674c42d7bc 52 minutes ago 451.2 MB
lighthouse.examples.widgets latest f449a383522b 52 minutes ago 451.2 MB
lighthouse.examples.multiapp latest 684fb9de9298 52 minutes ago 451.2 MB
lighthouse.examples.webapp latest 7ab84d42ddcd 52 minutes ago 451.2 MB
lighthouse.examples.cache latest 464a3b360d4d 52 minutes ago 449 MB
lighthouse.examples.base latest d990927b27e4 54 minutes ago 434.4 MB
lighthouse.examples.zk latest c31155053d47 2 days ago 342.7 MB
...

First Steps

There are some common components to each example that should be set up first,
namely a client container and the Zookeeper [https://zookeeper.apache.org] discovery method.

Launching Zookeeper

The zookeeper host in the cluster is expected to be named zk01 and use the
standard ports, so it can be launched with:

$ docker run --name zk01 -d lighthouse.examples.zk

Launching a Client

Launching a client container is a simple matter of using the included
launch.sh helper script found in the examples directory:

$./launch.sh client client

Details about the script can be found in the launching section.

Individual Nodes

Launching

Launching a new node can be done by hand via docker, but the examples
directory includes a handy launch.sh script to make things easier:

$./launch.sh <type> <name>

Where the “<type>” matches the end of the example docker image name. For
example the “lighthouse.examples.webapp” image’s node type is “webapp”.

The “<name>” portion is any host name you want to give to the node. Since
this is an SOA and nodes are (hopefully) automatically discovered the name
doesn’t really matter and is mostly for convenience.

Examining

Each node container exposes two web interface ports for examining what exactly
is going on: one for HAProxy and one for Supervisord [http://supervisord.org], the process management
tool used to run multiple processes at once in a single container. The HAProxy
web interface listens on port 9009 with the URI “/haproxy”, the supervisord web
interface listens on port 9000.

To avoid conflicting port assignments, a container will map these ports to a
random available one on the docker host. To see the resulting mapped port
you’ll have to run docker ps:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
aa037622260e lighthouse.examples.cache:latest "/bin/sh -c 'supervi 3 seconds ago Up 2 seconds 0.0.0.0:32768->1024/tcp, 0.0.0.0:32769->6379/tcp, 0.0.0.0:32770->9000/tcp, 0.0.0.0:32771->9009/tcp cache01
85890f46dc8f lighthouse.examples.zk:latest "/opt/zookeeper/bin/ 17 seconds ago Up 16 seconds 2181/tcp, 2888/tcp, 3888/tcp zk01

In this example, the “cache01” container’s HAProxy web interface can be accessed
via http://<docker_host_ip>:32771/haproxy and the supervisord web interface
via http://<docker_host_ip>:32770.

Connecting

Along with the launch.sh script there’s also a handy connect.sh script:

$./connect.sh <name>

This will attach to the container with the “<name>” name and run an
interactive bash session, helpful for examining log and configuration files
by hand. Note that the TERM environment variable is not set by default so
many things like less and clear might not work quite right unless it’s
set by hand.

For each node the lighthouse scripts run in debug mode and log quite a bit.
The log files for the lighthouse script live under
/var/log/supervisor/lighthouse in the container. The services served up
by containers will generally put their logs under /var/log/supervisor/.

The HAProxy config is written to /etc/haproxy.cfg.

Stopping

Unlike launching or connecting, there is no helper script as a simple docker
command does the job:

$ docker rm -f <name>

This will halt the node container and unregister it from zookeeper
automatically.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Examples

Simple Web Cluster Example

[image: ../_images/simple_example.png]
In this example we’ll construct a simple system with two clusters: a webapp
cluster serving up some basic content and a cache redis cluster used in creating
said content.

Creating the cache cluster

To start off with we’ll launch a couple cache nodes to create the redis
cluster:

$./launch.sh cache cache01

$./launch.sh cache cache02

Two should be fine for our purposes.

Warning

These redis instances are independent, if a request ends up using a different
cache than a previous one the results will be inconsistent! This is OK here
since this is a simple example but in the real world you’ll need to be mindful
of how requests are routed to clusters that keep state.

Creating the web cluster

Spinning up a webapp node is a simple matter:

$./launch.sh webapp app01

In this part of the example we’ll show off a particular feature of lighthouse:
handling multiple instances of the same service on a single host. To bring
up such a node:

$./launch.sh multiapp app02

This multiapp container will have two instances of the webapp process running,
each on different ports but reporting as part of the same cluster.

With these two launched you should see three entries in the “webapp” section
of the client container’s HAProxy web interface:

[image: ../_images/webapp_haproxy.png]
Two hosts, three nodes.

Sending traffic

Now that our clusters are up and discovered it’s time to send traffic to them.
First off we need to know which port the client image’s “8000” port mapped to.
This can be done with a simple docker ps command:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
6d6db2e1842e lighthouse.examples.client:latest "/bin/sh -c 'supervi 13 minutes ago Up 13 minutes 0.0.0.0:33270->1024/tcp, 0.0.0.0:33271->8000/tcp, 0.0.0.0:33272->8080/tcp, 0.0.0.0:33273->9000/tcp, 0.0.0.0:33274->9009/tcp client
82618a6a2fef lighthouse.examples.zk:latest "/opt/zookeeper/bin/ 28 hours ago Up 28 hours 2181/tcp, 2888/tcp, 3888/tcp zk01
...

Under the “PORTS section we find “0.0.0.0:33272->8080/tcp”, so in this example
the mapped port is “33274”.

So a curl to http://<docker host ip>:33274/ would yield:

<h1>Current count: 1</h1>

With each subsequent request the counter will update, and HAProxy will balance
the requests among the three webapp nodes.

Going further

This example showed how a very basic set of clusters can be set up, but it
doesn’t have to end there! Try:

	killing and spinning up nodes to each cluster and watch the HAProxy web
interface to see how it reacts

	taking a node down while blasting the cluster with traffic via tools
like ApacheBench [https://httpd.apache.org/docs/2.2/programs/ab.html]

	removing all nodes from the cache cluster while watching the reporting
logs from the webapp nodes

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Examples

API Meta-Cluster Example

[image: ../_images/api_cluster.png]
This example will demonstrate ACL-based routing where a single API is serviced
by multiple clusters, as well as the proxies feature of the HAProxy balancer
plugin.

We’ll have a redis-backed web API with two endpoints: one for “widgets” and one
for “sprockets”. Each endpoint will be served by a separate independent cluster
of webapp nodes.

The “sprockets” cluster will also communicate with a “partner” machine via a
cluster of proxy nodes. Regardless of how many nodes there are in the sprockets
cluster and which nodes come and go, the only nodes to talk to the partner
are the proxy nodes.

Creating the partner “machine”

To start off with we’ll launch a single instance of a “partner” container
meant to represent a 3rd-party API:

$./launch.sh partner partnerapi

Naming the container partnerapi is important, the configuration on the proxy
cluster nodes will assume the “partner” is reachable via that name.

Note

This “external” container is intentionally limited. It doesn’t make use
lighthouse at all, and is only reachable by name from “proxy” nodes.

Creating the proxy cluster

The proxy cluster will be limited in numbers at first since in such a real-life
scenario the 3rd party partner will whitelist only certain IPs:

$./launch.sh proxy proxy01

Naturally as this is just an example the cluster can be expanded to your heart’s
content.

Proxy nodes don’t run any extra services themselves, rather they configure their
HAProxy instances to proxy to the partnerapi machine. If you connect to
proxy01 and look at the /etc/haproxy.cfg file you should see something along
the lines of:

listen business_partner
 bind :7777
 mode http
 server partnerapi:88 partnerapi:88 maxconn 400

Creating the clusters

To start off with we’ll create two nodes for each of the cache, widgets and
sprockets clusters:

$./launch.sh cache cache01
$./launch.sh cache cache02
$./launch.sh widgets widgets01
$./launch.sh widgets widgets02
$./launch.sh sprockets sprockets01
$./launch.sh sprockets sprockets02

Once these containers are started you should see the widgets/sprockets nodes
show up in the HAProxy web interface of the client node:

[image: ../_images/meta_api_haproxy.png]

The widgets API

The widgets API has one endpoint, “/api/widgets” that responds to both GET and
POST requests.

A GET request shows a mapping of known widgets to their count, empty at first:

$ curl http://<docker_ip>:<port>/api/widgets
{
 "widgets": {}
}

A POST to the endpoint requires a “widget” parameter set to any sort of string:

$ curl -XPOST -d "widget=foo" http://<docker_ip>:<port>/api/widgets
{
 "success": true
}

With that “foo” widget added we can see the updated count:

$ curl http://<docker_ip>:<port>/api/widgets
{
 "widgets": {
 "foo": 1
 }
}

After a few GET and POST requests, you can check the HAProxy web interface
on the client and see the traffic being balanced on the “api_widgets” backend.

The sprockets API

The sprockets API is similar to widgets, it has a single endpoint that responds
to both GET and POST requests but sprockets are shown as a set rather than
a mapping.

However, the sprockets API also talks to the “partner” API via the proxy
cluster. Each response includes a “token” grabbed from the partner machine.

GET requests will show the set:

$ curl http://<docker_ip>:<port>/api/sprockets
{
 "token": "8c53bb14-92ad-4722-aa07-181aeddcfb94",
 "sprockets" []
}

POST requests require a “sprocket” parameter and will add a new sprocket to
the set:

$ curl -XPOST -d"sprocket=bar" http://<docker_ip>:<port>/api/sprockets
{
 "success": true,
 "token": "76a11362-d26d-496f-b981-ba864aa68877"
}
$ curl http://<docker_ip>:<port>/api/sprockets
{
 "token": "d7ee21c7-3a6f-4fc2-a1fe-0d62321bba4e",
 "sprockets" [
 "bar"
]
}

And there you have it! A series of horizontally scalable clusters that
communicates with an “external” service, proxied in such a way that the
external service only sees one machine talking to it.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

Writing Plugins

Lighthouse relies on a plugin system for it’s functionality. All load balancers,
discovery methods and health checks are plugins, even the included ones!

All that’s required for creating a new plugin is to subclass the proper base
class and add that subclass to the proper entry point in your project’s setup.

For example a new health check called mycheck might have a class called
MyCheck, a subclass of lighthouse.check.Check and added to a
setup.py‘s setup() call:

setup.py

from setuptools import setup

setup(
 # basics...
 install_requires=[
 # dependencies for your plugin go here
],
 entry_points={
 "lighthouse.checks": [
 mycheck = myproject.MyCheck
]
 }
)

Each of the three plugin types have their own entrypoint. For details of each of
the three plugin types see their individual documentation:

	Writing Health Check Plugins

	Writing Discovery Method Plugins

	Writing Load Balancer Plugins

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Writing Plugins

Writing Health Check Plugins

Health check plugins are the easiest of the three plugin types to write and
are liable to be the most common. Writing a new health check plugin is a
simple matter of creating a lighthouse.check.Check subclass and
exposing it via the lighthouse.checks entry point.

The key part of a health check plugin is the perform() method on the
subclass, it is where the actual checking takes place. It’s important
that this method take no arguments and returns True or False based
on the check’s success.

Examples

For an example of a check that has no external dependencies but uses custom
attributes and configuration, see the lighthouse.checks.http.HTTPCheck
class included in the source distribution.

Likewise, for an example of a simple health check that involves external
dependencies see the lighthouse.checks.redis.RedisCheck class.

Required Methods

	validate_dependencies(cls) (classmethod):

This classmethod should check that all required external dependencies for
your health check are met.

If the requirements are met, this method should return True. If not met
it should return False.

	validate_check_config(cls, config) (classmethod):

The “config” argument to this classmethod is the dictionary representation
of the health check’s portion of the service YAML configuration, this method
should validate any plugin-specific bits of that configuration. The base
lighthouse.check.Check class automatically validates that the standard
host, port, rise and fall values are present.

If any parts of the configuration are invalid, a ValueError exception should
be raised.

	apply_check_config(self, config):

This instance method’s config argument is also the dictionary config of the
health check’s portion of a service’s YAML config file, albeit one that has
already been validated.

This method should take the validated dictionary object and set any sort of
attributes/state/etc. on the instance as necessary.

Warning

It it is incredibly important that this method be idempotent with regards
to instances of your Check subclass. Configurations can be altered at any
time in any manner, sometimes with invalid values! You want your plugin’s
state to reflect the contents of the YAML config file at all times.

	perform():

This method is the heart of the health check. It performs the actual check
and should return True if the health check passes and False if it fails.

Note

This method does not take any arguments, any sort of context required to
perform the health check should be handled by applying the config and
setting instance attributes.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Writing Plugins

Writing Discovery Method Plugins

Discovery plugins handle storing the topography data of clusters and services,
the required functionality boils down to two things: “watching” and “reporting”.

A plugin must be able to “watch” for changes in membership for clusters and
react accordingly, updating Cluster instances and setting should_update
events when they occur. Likewise, the plugin must also be able to cause such
changes in membership by reporting nodes as available or down.

These plugins must be subclasses of lighthouse.discovery.Discovery,
for an example implementation for using Zookeeper [https://zookeeper.apache.org] see the
lighthouse.zookeeper.ZookeeperDiscovery class.

Having nodes agree with each other on the makeup of clusters they consume
and/or take part in is important. The best candidates for discovery methods
are strong “CP” distributed systems [http://en.wikipedia.org/wiki/CAP_theorem], that is reliable systems that give
solid guarantees that nodes interacting with it see the same thing regardless
of where they are.

Required Methods

	validate_dependencies(cls) (classmethod):

This classmethod should check that all required external dependencies for
your plugin are met.

If the requirements are met, this method should return True. If not met
it should return False.

	validate_config(cls, config) (classmethod):

The “config” argument to this classmethod is the result of loading the YAML
config file for the plugin (e.g. checks/mycheck.yaml for the example above).

This method should analyze the config dictionary object and raise a
ValueError exception for any invalid content.

	apply_config(self, config):

This instance method’s config argument is also the result of a loaded YAML
config file, albeit one that has already been validated.

This method should take the validated dictionary object and set any sort of
attributes/state/etc. on the instance as necessary.

Warning

It it is incredibly important that this method be idempotent with regards
to instances of your Discovery subclass. Configurations can be altered at
any time in any manner, sometimes with invalid values! You want your
plugin’s state to reflect the contents of the YAML config file at all times.

	connect():

This method should handle any sort of connection establishment to the discovery
method system. It takes no arguments.

	disconnect():

The disconnect() method is called when shutting down the discovery method
and should take care of undoing any actions taken by the connect() call.

	start_watching(self, cluster, should_update):

This method registers a cluster to be “watched” by the discovery method.
Whenever an update to the set of member nodes happens, this method must
update the nodes list of the passed-in lighthouse.cluster.Cluster
instance and call set() on the should_update threading event.

	stop_watching(self, cluster):

This method is the antithesis of the start_watching method, it is meant to
undo any actions taken in calls to start_watching with the same cluster
instance. Once this is called, any updates to the set of member nodes of the
cluster shouldn’t update the cluster instance or set the should_update event.

	report_up(self, service):

This is one of the two methods used by the lighthouse-reporter script. The
single argument is a lighthouse.service.Service instance. This method
should register the service as “up” to the discovery method such that any
lighthouse-writer consumer processes will see the current node as up and
configure their load balancers appropriately.

This method should utilize the the lighthouse.node.Node class and its
serialize() function to send data about the service on the local node to
the discovery method’s system.

	report_down(self, service):

This method is the other of the two used by lighthouse-reporter and is the
antithesis of the report_up method. This method should tell the discovery
method’s system that the given service on the current node is no longer
available.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Writing Plugins

Writing Load Balancer Plugins

The base class for balancer plugins (lighthouse.balancer.Balancer)
is deceptively simple, most of the heavy lifting is left to plugin writers.

The only balancer-specific method a subclass must define is the sync_file()
method, however there are implicit requirements for a load balancer plugin
to work well, such as gracefully reacting to configuration changes without
dropping traffic and not placing limits to the number of potential nodes
handled.

Balancer plugins aren’t necessary limited to load balancing either. Any
sort of clustering system, such as the ones for RabbitMQ [https://www.rabbitmq.com] or PostgreSQL [http://www.postgresql.org]
replication setups can benefit from having a balancer plugin that
automatically determines potential member nodes. The only limit is your
imagination!

Examples

The project includes an HAProxy balancer plugin via the
lighthouse.haproxy.balancer.HAProxy class. HAProxy is a powerful
tool with quite a few configuration options so the support code to get the
plugin to work is extensive.

Required Methods

	validate_dependencies(cls) (classmethod):

This classmethod should check that all required external dependencies for
your plugin are met.

If the requirements are met, this method should return True. If not met
it should return False.

	validate_config(cls, config) (classmethod):

The “config” argument to this classmethod is the result of loading the YAML
config file for the plugin (e.g. checks/mycheck.yaml for the example above).

This method should analyze the config dictionary object and raise a
ValueError exception for any invalid content.

	apply_config(self, config):

This instance method’s config argument is also the result of a loaded YAML
config file, albeit one that has already been validated.

This method should take the validated dictionary object and set any sort of
attributes/state/etc. on the instance as necessary.

Warning

It it is incredibly important that this method be idempotent with regards
to instances of your Balancer subclass. Configurations can be altered at
any time in any manner, sometimes with invalid values! You want your
plugin’s state to reflect the contents of the YAML config file at all times.

	sync_file(self, clusters):

This method takes a list of lighthouse.cluster.Cluster instances
and should write or update the load balancer’s configuration files to reflect
the member nodes of the clusters.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

Source Docs

	Pluggables
	lighthouse.pluggable

	lighthouse.balancer

	lighthouse.discovery

	lighthouse.check

	Config Watching
	lighthouse.configurable

	lighthouse.configs.watcher

	lighthouse.configs.handler

	lighthouse.configs.monitor

	Service Topography
	lighthouse.service

	lighthouse.cluster

	lighthouse.node

	lighthouse.peer

	HAProxy
	lighthouse.haproxy.balancer

	lighthouse.haproxy.control

	lighthouse.haproxy.config

	lighthouse.haproxy.stanzas

	Zookeeper
	lighthouse.zookeeper

	Service Checks
	lighthouse.checks.http

	lighthouse.checks.tcp

	Script Classes
	lighthouse.reporter

	lighthouse.writer

	Helper Modules
	lighthouse.log

	lighthouse.events

	Redis plugins
	lighthouse.redis.check

	Logging
	lighthouse.log

	lighthouse.log.config

	lighthouse.log.context

	lighthouse.log.cli

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

Pluggables

	lighthouse.pluggable

	lighthouse.balancer

	lighthouse.discovery

	lighthouse.check

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Pluggables

lighthouse.pluggable

	
class lighthouse.pluggable.Pluggable[source]

	Bases: lighthouse.configurable.Configurable

Base class for classes that can be defined via external plugins.

Subclasses define their entry_point attribute and subsequent calls to
get_installed_classes will look up any available classes associated
with that endpoint.

Entry points used by lighthouse can be found in setup.py in the root
of the project.

	
entry_point = None

	

	
classmethod validate_dependencies()[source]

	Validates a plugin’s external dependencies. Should return True if
all dependencies are met and False if not.

Subclasses are expected to define this method.

	
classmethod get_installed_classes()[source]

	Iterates over installed plugins associated with the entry_point and
returns a dictionary of viable ones keyed off of their names.

A viable installed plugin is one that is both loadable and a subclass
of the Pluggable subclass in question.

	
classmethod from_config(name, config)[source]

	Behaves like the base Configurable class’s from_config() except this
makes sure that the Pluggable subclass with the given name is
actually a properly installed plugin first.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Pluggables

lighthouse.balancer

	
class lighthouse.balancer.Balancer[source]

	Bases: lighthouse.pluggable.Pluggable

Base class for load balancer definitions.

The complexity of generating valid configuration content and updating
the proper file(s) is left as details for subclasses so this base class
remains incredibly simple.

All subclasses are expected to implement a sync_file method that is
called whenever an update to the topography of nodes happens.

	
config_subdirectory = 'balancers'

	

	
entry_point = 'lighthouse.balancers'

	

	
sync_file(clusters)[source]

	This method must take a list of clusters and update any and all
relevant configuration files with valid config content for balancing
requests for the given clusters.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Pluggables

lighthouse.discovery

	
class lighthouse.discovery.Discovery[source]

	Bases: lighthouse.pluggable.Pluggable

Base class for discovery method plugins.

Unlike the Balancer base class for load balancer plugins, this discovery
method plugin has several methods that subclasses are expected to define.

Subclasses are used for both the writer process and the reporter process
so each subclass needs to be able to report on individual nodes as well
as monitor and collect the status of all defined clusters.

It is important that the various instances of lighthouse running on various
machines agree with each other on the status of clusters so a distributed
system with strong CP characteristics is recommended.

	
config_subdirectory = 'discovery'

	

	
entry_point = 'lighthouse.discovery'

	

	
connect()[source]

	Subclasses should define this method to handle any sort of connection
establishment needed.

	
disconnect()[source]

	This method is used to facilitate any shutting down operations needed
by the subclass (e.g. closing connections and such).

	
start_watching(cluster, should_update)[source]

	Method called whenever a new cluster is defined and must be monitored
for changes to nodes.

Once a cluster is being successfully watched that cluster must be
added to the self.watched_clusters set!

Whenever a change is detected, the given should_update threading
event should be set.

	
stop_watching(cluster)[source]

	This method should halt any of the monitoring started that would be
started by a call to start_watching() with the same cluster.

Once the cluster is no longer being watched that cluster must be
removed from the self.watched_clusters set!

	
report_up(service, port)[source]

	This method is used to denote that the given service present on the
current machine should be considered up and available.

	
report_down(service, port)[source]

	This method is used to denote that the given service present on the
current machine should be considered down and unavailable.

	
stop()[source]

	Simple method that sets the shutdown event and calls the subclass’s
wind_down() method.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Pluggables

lighthouse.check

	
class lighthouse.check.Check[source]

	Bases: lighthouse.pluggable.Pluggable

Base class for service check plugins.

Subclasses are expected to define a name for the check, plus methods for
validating that any dependencies are present, the given config is valid,
and of course performing the check itself.

	
entry_point = 'lighthouse.checks'

	

	
classmethod validate_check_config(config)[source]

	This method should return True if the given config is valid for the
health check subclass, False otherwise.

	
apply_check_config(config)[source]

	This method takes an already-validated configuration dictionary as its
only argument.

The method should set any attributes or state in the instance needed
for performing the health check.

	
perform()[source]

	This perform() is at the heart of the check. Subclasses must define
this method to actually perform their check. If the check passes, the
method should return True, otherwise False.

Note that this method takes no arguments. Any sort of context required
for performing a check should be handled by the config.

	
run()[source]

	Calls the perform() method defined by subclasses and stores the
result in a results deque.

After the result is determined the results deque is analyzed to see
if the passing flag should be updated. If the check was considered
passing and the previous self.fall number of checks failed, the check
is updated to not be passing. If the check was not passing and the
previous self.rise number of checks passed, the check is updated to
be considered passing.

	
last_n_results(n)[source]

	Helper method for returning a set number of the previous check results.

	
apply_config(config)[source]

	Sets attributes based on the given config.

Also adjusts the results deque to either expand (padding itself with
False results) or contract (by removing the oldest results) until it
matches the required length.

	
classmethod validate_config(config)[source]

	Validates that required config entries are present.

Each check requires a host, port, rise and fall to be
configured.

The rise and fall variables are integers denoting how many times a
check must pass before being considered passing and how many times a
check must fail before being considered failing.

	
class lighthouse.check.deque(iterable=(), maxlen=None)[source]

	Bases: collections.deque

Custom collections.deque subclass for 2.6 compatibility.

The python 2.6 version of the deque class doesn’t support referring to
the maxlen attribute.

	
maxlen

	

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

Config Watching

	lighthouse.configurable

	lighthouse.configs.watcher

	lighthouse.configs.handler

	lighthouse.configs.monitor

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Config Watching

lighthouse.configurable

	
class lighthouse.configurable.Configurable[source]

	Bases: object

Base class for targets configured by the config file watching system.

Each subclass is expected to be able to validate and apply configuration
dictionaries that come from config file content.

	
name = None

	

	
config_subdirectory = None

	

	
classmethod validate_config(config)[source]

	Validates a given config, returns the validated config dictionary
if valid, raises a ValueError for any invalid values.

Subclasses are expected to define this method.

	
apply_config(config)[source]

	Applies a given config to the subclass.

Setting instance attributes, for example. Subclasses are expected
to define this method.

NOTE: It is incredibly important that this method be idempotent with
regards to the instance.

	
classmethod from_config(name, config)[source]

	Returns a Configurable instance with the given name and config.

By default this is a simple matter of calling the constructor, but
subclasses that are also Pluggable instances override this in order
to check that the plugin is installed correctly first.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Config Watching

lighthouse.configs.watcher

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Config Watching

lighthouse.configs.handler

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Config Watching

lighthouse.configs.monitor

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

Service Topography

	lighthouse.service

	lighthouse.cluster

	lighthouse.node

	lighthouse.peer

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Service Topography

lighthouse.service

	
class lighthouse.service.Service[source]

	Bases: lighthouse.configurable.Configurable

Class representing a service provided by the current machine.

This is a straightforward Configurable subclass, it defines what a valid
configuration for a service is and applies them.

	
config_subdirectory = 'services'

	

	
classmethod validate_config(config)[source]

	Runs a check on the given config to make sure that port/ports and
discovery is defined.

	
classmethod validate_check_configs(config)[source]

	Config validation specific to the health check options.

Verifies that checks are defined along with an interval, and calls
out to the Check class to make sure each individual check’s config
is valid.

	
apply_config(config)[source]

	Takes a given validated config dictionary and sets an instance
attribute for each one.

For check definitions, a Check instance is is created and a checks
attribute set to a dictionary keyed off of the checks’ names. If
the Check instance has some sort of error while being created an error
is logged and the check skipped.

	
reset_status()[source]

	Sets the up/down status of the service ports to the default state.

Useful for when the configuration is updated and the checks involved
in determining the status might have changed.

	
update_ports()[source]

	Sets the ports attribute to the set of valid port values set in
the configuration.

	
update_checks(check_configs)[source]

	Maintains the values in the checks attribute’s dictionary. Each
key in the dictionary is a port, and each value is a nested dictionary
mapping each check’s name to the Check instance.

This method makes sure the attribute reflects all of the properly
configured checks and ports. Removing no-longer-configured ports
is left to the run_checks method.

	
run_checks()[source]

	Iterates over the configured ports and runs the checks on each one.

Returns a two-element tuple: the first is the set of ports that
transitioned from down to up, the second is the set of ports that
transitioned from up to down.

Also handles the case where a check for a since-removed port is run,
marking the port as down regardless of the check’s result and removing
the check(s) for the port.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Service Topography

lighthouse.cluster

	
class lighthouse.cluster.Cluster[source]

	Bases: lighthouse.configurable.Configurable

The class representing a cluster of member nodes in a service.

A simple class that merely keeps a list of nodes and defines which
discovery method is used to track said nodes.

	
config_subdirectory = 'clusters'

	

	
classmethod validate_config(config)[source]

	Validates a config dictionary parsed from a cluster config file.

Checks that a discovery method is defined and that at least one of
the balancers in the config are installed and available.

	
apply_config(config)[source]

	Sets the discovery and meta_cluster attributes, as well as the
configured + available balancer attributes from a given validated
config.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Service Topography

lighthouse.node

	
class lighthouse.node.Node(host, ip, port, peer=None, metadata=None)[source]

	Bases: object

The class representing a member node of a cluster.

Consists of a port, a host and a peer, plus methods for serializing
and deserializing themselves so that they can be transmitted back and
forth via discovery methods.

	
name

	Simple property for “naming” a node via the host and port.

	
classmethod current(service, port)[source]

	Returns a Node instance representing the current service node.

Collects the host and IP information for the current machine and
the port information from the given service.

	
serialize()[source]

	Serializes the node data as a JSON map string.

	
classmethod deserialize(value)[source]

	Creates a new Node instance via a JSON map string.

Note that port and ip and are required keys for the JSON map,
peer and host are optional. If peer is not present, the new Node
instance will use the current peer. If host is not present, the
hostname of the given ip is looked up.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Service Topography

lighthouse.peer

	
class lighthouse.peer.Peer(name, ip, port=None)[source]

	Bases: object

This class represents a host running a lighthouse reporter.

When a reporter script tells its discovery method that a node is up, it
includes information about itself via this class so that writer scripts
reading that information can coordinate their peers.

This is helpful for HAProxy as a way to generate “peers” config stanzas
so instances of HAProxy in a given cluster can share stick-table data.

	
classmethod current()[source]

	Helper method for getting the current peer of whichever host we’re
running on.

	
serialize()[source]

	Serializes the Peer data as a simple JSON map string.

	
classmethod deserialize(value)[source]

	Generates a Peer instance via a JSON string of the sort generated
by Peer.deserialize.

The name and ip keys are required to be present in the JSON map,
if the port key is not present the default is used.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

HAProxy

	lighthouse.haproxy.balancer

	lighthouse.haproxy.control

	lighthouse.haproxy.config

	lighthouse.haproxy.stanzas

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	HAProxy

lighthouse.haproxy.balancer

	
class lighthouse.haproxy.balancer.HAProxy(*args, **kwargs)[source]

	Bases: lighthouse.balancer.Balancer

The HAProxy balancer class.

Leverages the HAProxy control, config and stanza-related classes in order
to keep the HAProxy config file in sync with the services and nodes
discovered.

	
name = 'haproxy'

	

	
classmethod validate_dependencies()[source]

	The HAProxy Balancer doesn’t use any specific python libraries so there
are no extra dependencies to check for.

	
classmethod validate_config(config)[source]

	Validates that a config file path and a control socket file path
and pid file path are all present in the HAProxy config.

	
classmethod validate_proxies_config(proxies)[source]

	Specific config validation method for the “proxies” portion of a
config.

Checks that each proxy defines a port and a list of upstreams,
and that each upstream entry has a host and port defined.

	
apply_config(config)[source]

	Constructs HAProxyConfig and HAProxyControl instances based on the
contents of the config.

This is mostly a matter of constructing the configuration stanzas.

	
sync_file(clusters)[source]

	Generates new HAProxy config file content and writes it to the
file at haproxy_config_path.

If a restart is not necessary the nodes configured in HAProxy will
be synced on the fly. If a restart is necessary, one will be
triggered.

	
restart()[source]

	Tells the HAProxy control object to restart the process.

If it’s been fewer than restart_interval seconds since the previous
restart, it will wait until the interval has passed. This staves off
situations where the process is constantly restarting, as it is
possible to drop packets for a short interval while doing so.

	
sync_nodes(clusters)[source]

	Syncs the enabled/disabled status of nodes existing in HAProxy based
on the given clusters.

This is used to inform HAProxy of up/down nodes without necessarily
doing a restart of the process.

	
get_current_nodes(clusters)[source]

	Returns two dictionaries, the current nodes and the enabled nodes.

The current_nodes dictionary is keyed off of the cluster name and
values are a list of nodes known to HAProxy.

The enabled_nodes dictionary is also keyed off of the cluster name
and values are list of enabled nodes, i.e. the same values as
current_nodes but limited to servers currently taking traffic.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	HAProxy

lighthouse.haproxy.control

	
class lighthouse.haproxy.control.HAProxyControl(config_file_path, socket_file_path, pid_file_path)[source]

	Bases: object

Class used to control a running HAProxy process.

Includes basic functionality for soft restarts as well as gathering info
about the HAProxy process and its active nodes, plus methods for enabling
or disabling nodes on the fly.

Also allows for sending commands to the HAProxy control socket itself.

	
restart()[source]

	Performs a soft reload of the HAProxy process.

	
get_version()[source]

	Returns a tuple representing the installed HAProxy version.

The value of the tuple is (<major>, <minor>, <patch>), e.g. if HAProxy
version 1.5.3 is installed, this will return (1, 5, 3).

	
get_info()[source]

	Parses the output of a “show info” HAProxy command and returns a
simple dictionary of the results.

	
get_active_nodes()[source]

	Returns a dictionary of lists, where the key is the name of a service
and the list includes all active nodes associated with that service.

	
enable_node(service_name, node_name)[source]

	Enables a given node name for the given service name via the
“enable server” HAProxy command.

	
disable_node(service_name, node_name)[source]

	Disables a given node name for the given service name via the
“disable server” HAProxy command.

	
send_command(command)[source]

	Sends a given command to the HAProxy control socket.

Returns the response from the socket as a string.

If a known error response (e.g. “Permission denied.”) is given then
the appropriate exception is raised.

	
process_command_response(command, response)[source]

	Takes an HAProxy socket command and its response and either raises
an appropriate exception or returns the formatted response.

	
exception lighthouse.haproxy.control.HAProxyControlError[source]

	Bases: exceptions.Exception

Base exception for HAProxyControl-related actions.

	
exception lighthouse.haproxy.control.UnknownCommandError[source]

	Bases: lighthouse.haproxy.control.HAProxyControlError

Exception raised if an unrecognized command was sent to the HAProxy socket.

	
exception lighthouse.haproxy.control.PermissionError[source]

	Bases: lighthouse.haproxy.control.HAProxyControlError

Exception denoting that the HAProxy control socket does not have proper
authentication level for executing a given command.

For example, if the socket is set up with a a level lower than “admin”,
the enable/disable server commands will fail.

	
exception lighthouse.haproxy.control.UnknownServerError[source]

	Bases: lighthouse.haproxy.control.HAProxyControlError

Exception raised if an enable/disable server command is executed against
a backend that HAProxy doesn’t know about.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	HAProxy

lighthouse.haproxy.config

	
class lighthouse.haproxy.config.HAProxyConfig(global_stanza, defaults_stanza, proxy_stanzas=None, stats_stanza=None, meta_clusters=None, bind_address=None)[source]

	Bases: object

Class for generating HAProxy config file content.

Requires global and defaults stanzas to be passed, can optionally take
a stats_stanza for enabling a stats portal.

	
generate(clusters, version=None)[source]

	Generates HAProxy config file content based on a given list of
clusters.

	
get_meta_clusters(clusters)[source]

	Returns a dictionary keyed off of meta cluster names, where the values
are lists of clusters associated with the meta cluster name.

If a meta cluster name doesn’t have a port defined in the
meta_cluster_ports attribute an error is given and the meta cluster
is removed from the mapping.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	HAProxy

lighthouse.haproxy.stanzas

	
class lighthouse.haproxy.stanzas.stanza.Stanza(section_name)[source]

	Bases: object

Subclass for config file stanzas.

In an HAProxy config file, a stanza is in the form of:

stanza header
 directive
 directive
 directive

Stanza instances have a header attribute for the header and a list of
lines, one for each directive line.

	
add_lines(lines)[source]

	Simple helper method for adding multiple lines at once.

	
add_line(line)[source]

	Adds a given line string to the list of lines, validating the line
first.

	
is_valid_line(line)[source]

	Validates a given line against the associated “section” (e.g. ‘global’
or ‘frontend’, etc.) of a stanza.

If a line represents a directive that shouldn’t be within the stanza
it is rejected. See the directives.json file for a condensed look
at valid directives based on section.

	
class lighthouse.haproxy.stanzas.meta.MetaFrontendStanza(name, port, lines, members, bind_address=None)[source]

	Bases: lighthouse.haproxy.stanzas.stanza.Stanza

Stanza subclass representing a shared “meta” cluster frontend.

These frontends just contain ACL directives for routing requests to
separate cluster backends. If a member cluster does not have an ACL rule
defined in its haproxy config an error is logged and the member cluster
is skipped.

	
class lighthouse.haproxy.stanzas.frontend.FrontendStanza(cluster, bind_address=None)[source]

	Bases: lighthouse.haproxy.stanzas.stanza.Stanza

Stanza subclass representing a “frontend” stanza.

A frontend stanza defines an address to bind to an a backend to route
traffic to. A cluster can defined custom lines via a “frontend” entry
in their haproxy config dictionary.

	
class lighthouse.haproxy.stanzas.backend.BackendStanza(cluster)[source]

	Bases: lighthouse.haproxy.stanzas.stanza.Stanza

Stanza subclass representing a “backend” stanza.

A backend stanza defines the nodes (or “servers”) belonging to a given
cluster as well as how routing/load balancing between those nodes happens.

A given cluster can define custom directives via a list of lines in their
haproxy config with the key “backend”.

	
class lighthouse.haproxy.stanzas.peers.PeersStanza(cluster)[source]

	Bases: lighthouse.haproxy.stanzas.stanza.Stanza

Stanza subclass representing a “peers” stanza.

This stanza lists “peer” haproxy instances in a cluster, so that each
instance can coordinate and share stick-table information. Useful for
tracking cluster-wide stats.

	
class lighthouse.haproxy.stanzas.proxy.ProxyStanza(name, port, upstreams, options=None, bind_address=None)[source]

	Bases: lighthouse.haproxy.stanzas.stanza.Stanza

Stanza for independent proxy directives.

These are used to add simple proxying to a system, e.g. communicating
with a third party service via a dedicated internal machine with a white-
listed IP.

	
class lighthouse.haproxy.stanzas.stats.StatsStanza(port, uri='/')[source]

	Bases: lighthouse.haproxy.stanzas.stanza.Stanza

Stanza subclass representing a “listen” stanza specifically for the
HAProxy stats feature.

Takes an optional uri parameter that defaults to the root uri.

	
class lighthouse.haproxy.stanzas.section.Section(heading, *stanzas)[source]

	Bases: object

Represents a section of HAProxy config file stanzas.

This is used to organize generated config file content and provide header
comments for sections describing nature of the grouped-together stanzas.

	
header

	

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

Zookeeper

	lighthouse.zookeeper

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Zookeeper

lighthouse.zookeeper

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

Service Checks

	lighthouse.checks.http

	lighthouse.checks.tcp

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Service Checks

lighthouse.checks.http

	
class lighthouse.checks.http.HTTPCheck(*args, **kwargs)[source]

	Bases: lighthouse.check.Check

Simple check for HTTP services.

Pings a configured uri on the host. The check passes if the response
code is in the 2xx range.

	
name = 'http'

	

	
classmethod validate_dependencies()[source]

	This check uses stdlib modules so dependencies are always present.

	
classmethod validate_check_config(config)[source]

	Validates the http check config. The “uri” key is required.

	
apply_check_config(config)[source]

	Takes a validated config dictionary and sets the uri, use_https
and method attributes based on the config’s contents.

	
perform()[source]

	Performs a simple HTTP request against the configured url and returns
true if the response has a 2xx code.

The url can be configured to use https via the “https” boolean flag
in the config, as well as a custom HTTP method via the “method” key.

The default is to not use https and the GET method.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Service Checks

lighthouse.checks.tcp

	
class lighthouse.checks.tcp.TCPCheck(*args, **kwargs)[source]

	Bases: lighthouse.check.Check

Service health check using TCP request/response messages.

Sends a certain message to the configured port and passes if the response
is an expected one.

	
name = 'tcp'

	

	
classmethod validate_dependencies()[source]

	This check uses stdlib modules so dependencies are always present.

	
classmethod validate_check_config(config)[source]

	Ensures that a query and expected response are configured.

	
apply_check_config(config)[source]

	Takes the query and response fields from a validated config
dictionary and sets the proper instance attributes.

	
perform()[source]

	Performs a straightforward TCP request and response.

Sends the TCP query to the proper host and port, and loops over the
socket, gathering response chunks until a full line is acquired.

If the response line matches the expected value, the check passes. If
not, the check fails. The check will also fail if there’s an error
during any step of the send/receive process.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

Script Classes

	lighthouse.reporter

	lighthouse.writer

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Script Classes

lighthouse.reporter

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Script Classes

lighthouse.writer

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

Helper Modules

	lighthouse.log

	lighthouse.events

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Helper Modules

lighthouse.log

	
lighthouse.log.setup(program)[source]

	Simple function that sets the program on the ContextFilter and returns
the root logger.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Helper Modules

lighthouse.events

	
lighthouse.events.wait_on_any(*events, **kwargs)[source]

	Helper method for waiting for any of the given threading events to be
set.

The standard threading lib doesn’t include any mechanism for waiting on
more than one event at a time so we have to monkey patch the events
so that their set() and clear() methods fire a callback we can use
to determine how a composite event should react.

	
lighthouse.events.wait_on_event(event, timeout=None)[source]

	Waits on a single threading Event, with an optional timeout.

This is here for compatibility reasons as python 2 can’t reliably wait
on an event without a timeout and python 3 doesn’t define a maxint.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

Redis plugins

	lighthouse.redis.check

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Redis plugins

lighthouse.redis.check

	
class lighthouse.redis.check.RedisCheck(*args, **kwargs)[source]

	Bases: lighthouse.checks.tcp.TCPCheck

Redis service checker.

Pings a redis server to make sure that it’s available.

	
name = 'redis'

	

	
classmethod validate_check_config(config)[source]

	The base Check class assures that a host and port are configured so
this method is a no-op.

	
apply_check_config(config)[source]

	This method doesn’t actually use any configuration data, as the query
and response for redis are already established.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

Logging

	lighthouse.log

	lighthouse.log.config

	lighthouse.log.context

	lighthouse.log.cli

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Helper Modules

lighthouse.log

	
lighthouse.log.setup(program)[source]

	Simple function that sets the program on the ContextFilter and returns
the root logger.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Logging

lighthouse.log.config

	
class lighthouse.log.config.Logging[source]

	Bases: lighthouse.configurable.Configurable

Simple Configurable subclass that allows for runtime configuration of
python’s logging infrastructure.

Since python provides a handy dictConfig function and our system already
provides the watched file contents as dicts the work here is tiny.

	
name = 'logging'

	

	
classmethod from_config(name, config)[source]

	Override of the base from_config() method that returns None if
the name of the config file isn’t “logging”.

We do this in case this Configurable subclass winds up sharing the
root of the config directory with other subclasses.

	
classmethod validate_config(config)[source]

	The validation of a logging config is a no-op at this time, the call
to dictConfig() when the config is applied will do the validation
for us.

	
apply_config(config)[source]

	Simple application of the given config via a call to the logging
module’s dictConfig() method.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Logging

lighthouse.log.context

	
class lighthouse.log.context.ContextFilter(name='')[source]

	Bases: logging.Filter

Simple logging.Filter subclass that adds a program attribute to
each LogRecord.

The attribute’s value comes from the “program” class attribute.

Initialize a filter.

Initialize with the name of the logger which, together with its
children, will have its events allowed through the filter. If no
name is specified, allow every event.

	
program = None

	

	
filter(record)[source]

	Sets the program attribute on the record. Always returns True as
we’re not actually filtering any records, just enhancing them.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Source Docs

 	Logging

lighthouse.log.cli

	
lighthouse.log.cli.color_string(color, string)[source]

	Colorizes a given string, if coloring is available.

	
lighthouse.log.cli.color_for_level(level)[source]

	Returns the colorama Fore color for a given log level.

If color is not available, returns None.

	
lighthouse.log.cli.create_thread_color_cycle()[source]

	Generates a never-ending cycle of colors to choose from for individual
threads.

If color is not available, a cycle that repeats None every time is
returned instead.

	
lighthouse.log.cli.color_for_thread(thread_id)[source]

	Associates the thread ID with the next color in the thread_colors cycle,
so that thread-specific parts of a log have a consistent separate color.

	
class lighthouse.log.cli.CLIHandler(stream=None)[source]

	Bases: logging.StreamHandler, object

Specialized StreamHandler that provides color output if the output is a
terminal and the colorama library is available.

Initialize the handler.

If stream is not specified, sys.stderr is used.

	
is_tty

	Returns true if the handler’s stream is a terminal.

	
format(record)[source]

	Formats a given log record to include the timestamp, log level, thread
ID and message. Colorized if coloring is available.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

Release Notes

	0.10.0

	0.11.0

	0.11.1

	0.11.2

	0.12.0

	0.13.0

	0.13.1

	0.14.0

	0.15.0

	0.15.1

	0.9.0

	0.9.1

	0.9.2

	1.0.0

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.10.0

	Update nomenclature: “balancer” is now “coordinator”, as it is a better fit
with what the class actually does.

	The redis check is moved to an “extra”. To install it the bracket syntax must
be used (i.e. “pip install lighthouse[redis]”).

	New TCPCheck health check for services that expose a TCP command for health
checks, such as redis and zookeeper.

	A service that has no valid health checks no longer defaults to unavailable.
Each round of checks fires a warning about having no checks but still reports
as available.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.11.0

	Revert update of the “balancer” nomenclature. Any sort of updates to go beyond
using load balancers is a long way off and it’s best not to get ahead of
ourselves.

	Update TCP check’s query & response to be optional. If both are omitted from
a config, a simple successful connection will cause the check to pass.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.11.1

	Fix bug where health check ports passed as strings caused exceptions.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.11.2

	Update reporter to use a ThreadPoolExecutor rather than the older undocumented
ThreadPool.

	Fix bug where if multiple services were present, only one would be checked and
reported on.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.12.0

	Fix bug where a blank HAProxy config would be written out and not updated

	Add a “multi-port” feature, service config files can now specify multiple
ports for use cases where multiple instances of the same service run on
the same machine.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.13.0

	Add feature for configuring the logging system.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.13.1

	Add optional ContextFilter so that the current program “WRITER” or “REPORTER”
is available on log records for formatting.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.14.0

	Big refactor to how concurrecy is handled, should fix situations where
the writer process would spit out an incomplete HAProxy config when restarted.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.15.0

	Fixed a bug where HAProxy reloads weren’t supplanting the existing processes

	Fixed a bug where files with .yml as the extension were being ignored.

	Config files for haproxy now live in a “balancers” subdirectory.

	Completely revamped the logging system, logging is now configured via a
“logging.yml” file at the root of the config directory.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.15.1

	Fix a bug where HAProxy would be restarted several times simultaneously,
winding up with several processes at once.

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.9.0

	Initial public release

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.9.1

	Small fixups to documentation and tests

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

0.9.2

	Fixes to documentation, links and spelling etc.

	Include the classifiers.txt file in the manifest so pip installs work again

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	lighthouse 1.0.0 documentation

 	Release Notes

1.0.0

	Initial stable release!

	Updates to fix stricter style tests

	Re-vamped the look and feel of the generated docs

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	lighthouse 1.0.0 documentation

 Python Module Index

 l

 			

 		
 l	

 	[image: -]
 	
 lighthouse	

 	
 	
 lighthouse.balancer	

 	
 	
 lighthouse.check	

 	
 	
 lighthouse.checks.http	

 	
 	
 lighthouse.checks.tcp	

 	
 	
 lighthouse.cluster	

 	
 	
 lighthouse.configurable	

 	
 	
 lighthouse.discovery	

 	
 	
 lighthouse.events	

 	
 	
 lighthouse.haproxy.balancer	

 	
 	
 lighthouse.haproxy.config	

 	
 	
 lighthouse.haproxy.control	

 	
 	
 lighthouse.haproxy.stanzas.backend	

 	
 	
 lighthouse.haproxy.stanzas.frontend	

 	
 	
 lighthouse.haproxy.stanzas.meta	

 	
 	
 lighthouse.haproxy.stanzas.peers	

 	
 	
 lighthouse.haproxy.stanzas.proxy	

 	
 	
 lighthouse.haproxy.stanzas.section	

 	
 	
 lighthouse.haproxy.stanzas.stanza	

 	
 	
 lighthouse.haproxy.stanzas.stats	

 	
 	
 lighthouse.log	

 	
 	
 lighthouse.log.cli	

 	
 	
 lighthouse.log.config	

 	
 	
 lighthouse.log.context	

 	
 	
 lighthouse.node	

 	
 	
 lighthouse.peer	

 	
 	
 lighthouse.pluggable	

 	
 	
 lighthouse.redis.check	

 	
 	
 lighthouse.service	

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	lighthouse 1.0.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	add_line() (lighthouse.haproxy.stanzas.stanza.Stanza method)

 	add_lines() (lighthouse.haproxy.stanzas.stanza.Stanza method)

 	

 	apply_check_config() (lighthouse.check.Check method)

 	

 	(lighthouse.checks.http.HTTPCheck method)

 	(lighthouse.checks.tcp.TCPCheck method)

 	(lighthouse.redis.check.RedisCheck method)

 	apply_config() (lighthouse.check.Check method)

 	

 	(lighthouse.cluster.Cluster method)

 	(lighthouse.configurable.Configurable method)

 	(lighthouse.haproxy.balancer.HAProxy method)

 	(lighthouse.log.config.Logging method)

 	(lighthouse.service.Service method)

B

 	

 	BackendStanza (class in lighthouse.haproxy.stanzas.backend)

 	

 	Balancer (class in lighthouse.balancer)

C

 	

 	Check (class in lighthouse.check)

 	CLIHandler (class in lighthouse.log.cli)

 	Cluster (class in lighthouse.cluster)

 	color_for_level() (in module lighthouse.log.cli)

 	color_for_thread() (in module lighthouse.log.cli)

 	color_string() (in module lighthouse.log.cli)

 	

 	config_subdirectory (lighthouse.balancer.Balancer attribute)

 	

 	(lighthouse.cluster.Cluster attribute)

 	(lighthouse.configurable.Configurable attribute)

 	(lighthouse.discovery.Discovery attribute)

 	(lighthouse.service.Service attribute)

 	Configurable (class in lighthouse.configurable)

 	connect() (lighthouse.discovery.Discovery method)

 	ContextFilter (class in lighthouse.log.context)

 	create_thread_color_cycle() (in module lighthouse.log.cli)

 	current() (lighthouse.node.Node class method)

 	

 	(lighthouse.peer.Peer class method)

D

 	

 	deque (class in lighthouse.check)

 	deserialize() (lighthouse.node.Node class method)

 	

 	(lighthouse.peer.Peer class method)

 	disable_node() (lighthouse.haproxy.control.HAProxyControl method)

 	

 	disconnect() (lighthouse.discovery.Discovery method)

 	Discovery (class in lighthouse.discovery)

E

 	

 	enable_node() (lighthouse.haproxy.control.HAProxyControl method)

 	

 	entry_point (lighthouse.balancer.Balancer attribute)

 	

 	(lighthouse.check.Check attribute)

 	(lighthouse.discovery.Discovery attribute)

 	(lighthouse.pluggable.Pluggable attribute)

F

 	

 	filter() (lighthouse.log.context.ContextFilter method)

 	format() (lighthouse.log.cli.CLIHandler method)

 	

 	from_config() (lighthouse.configurable.Configurable class method)

 	

 	(lighthouse.log.config.Logging class method)

 	(lighthouse.pluggable.Pluggable class method)

 	FrontendStanza (class in lighthouse.haproxy.stanzas.frontend)

G

 	

 	generate() (lighthouse.haproxy.config.HAProxyConfig method)

 	get_active_nodes() (lighthouse.haproxy.control.HAProxyControl method)

 	get_current_nodes() (lighthouse.haproxy.balancer.HAProxy method)

 	get_info() (lighthouse.haproxy.control.HAProxyControl method)

 	

 	get_installed_classes() (lighthouse.pluggable.Pluggable class method)

 	get_meta_clusters() (lighthouse.haproxy.config.HAProxyConfig method)

 	get_version() (lighthouse.haproxy.control.HAProxyControl method)

H

 	

 	HAProxy (class in lighthouse.haproxy.balancer)

 	HAProxyConfig (class in lighthouse.haproxy.config)

 	HAProxyControl (class in lighthouse.haproxy.control)

 	

 	HAProxyControlError

 	header (lighthouse.haproxy.stanzas.section.Section attribute)

 	HTTPCheck (class in lighthouse.checks.http)

I

 	

 	is_tty (lighthouse.log.cli.CLIHandler attribute)

 	

 	is_valid_line() (lighthouse.haproxy.stanzas.stanza.Stanza method)

L

 	

 	last_n_results() (lighthouse.check.Check method)

 	lighthouse.balancer (module)

 	lighthouse.check (module)

 	lighthouse.checks.http (module)

 	lighthouse.checks.tcp (module)

 	lighthouse.cluster (module)

 	lighthouse.configurable (module)

 	lighthouse.discovery (module)

 	lighthouse.events (module)

 	lighthouse.haproxy.balancer (module)

 	lighthouse.haproxy.config (module)

 	lighthouse.haproxy.control (module)

 	lighthouse.haproxy.stanzas.backend (module)

 	lighthouse.haproxy.stanzas.frontend (module)

 	lighthouse.haproxy.stanzas.meta (module)

 	

 	lighthouse.haproxy.stanzas.peers (module)

 	lighthouse.haproxy.stanzas.proxy (module)

 	lighthouse.haproxy.stanzas.section (module)

 	lighthouse.haproxy.stanzas.stanza (module)

 	lighthouse.haproxy.stanzas.stats (module)

 	lighthouse.log (module)

 	lighthouse.log.cli (module)

 	lighthouse.log.config (module)

 	lighthouse.log.context (module)

 	lighthouse.node (module)

 	lighthouse.peer (module)

 	lighthouse.pluggable (module)

 	lighthouse.redis.check (module)

 	lighthouse.service (module)

 	Logging (class in lighthouse.log.config)

M

 	

 	maxlen (lighthouse.check.deque attribute)

 	

 	MetaFrontendStanza (class in lighthouse.haproxy.stanzas.meta)

N

 	

 	name (lighthouse.checks.http.HTTPCheck attribute)

 	

 	(lighthouse.checks.tcp.TCPCheck attribute)

 	(lighthouse.configurable.Configurable attribute)

 	(lighthouse.haproxy.balancer.HAProxy attribute)

 	(lighthouse.log.config.Logging attribute)

 	(lighthouse.node.Node attribute)

 	(lighthouse.redis.check.RedisCheck attribute)

 	

 	Node (class in lighthouse.node)

P

 	

 	Peer (class in lighthouse.peer)

 	PeersStanza (class in lighthouse.haproxy.stanzas.peers)

 	perform() (lighthouse.check.Check method)

 	

 	(lighthouse.checks.http.HTTPCheck method)

 	(lighthouse.checks.tcp.TCPCheck method)

 	PermissionError

 	

 	Pluggable (class in lighthouse.pluggable)

 	process_command_response() (lighthouse.haproxy.control.HAProxyControl method)

 	program (lighthouse.log.context.ContextFilter attribute)

 	ProxyStanza (class in lighthouse.haproxy.stanzas.proxy)

R

 	

 	RedisCheck (class in lighthouse.redis.check)

 	report_down() (lighthouse.discovery.Discovery method)

 	report_up() (lighthouse.discovery.Discovery method)

 	reset_status() (lighthouse.service.Service method)

 	

 	restart() (lighthouse.haproxy.balancer.HAProxy method)

 	

 	(lighthouse.haproxy.control.HAProxyControl method)

 	run() (lighthouse.check.Check method)

 	run_checks() (lighthouse.service.Service method)

S

 	

 	Section (class in lighthouse.haproxy.stanzas.section)

 	send_command() (lighthouse.haproxy.control.HAProxyControl method)

 	serialize() (lighthouse.node.Node method)

 	

 	(lighthouse.peer.Peer method)

 	Service (class in lighthouse.service)

 	setup() (in module lighthouse.log)

 	Stanza (class in lighthouse.haproxy.stanzas.stanza)

 	

 	start_watching() (lighthouse.discovery.Discovery method)

 	StatsStanza (class in lighthouse.haproxy.stanzas.stats)

 	stop() (lighthouse.discovery.Discovery method)

 	stop_watching() (lighthouse.discovery.Discovery method)

 	sync_file() (lighthouse.balancer.Balancer method)

 	

 	(lighthouse.haproxy.balancer.HAProxy method)

 	sync_nodes() (lighthouse.haproxy.balancer.HAProxy method)

T

 	

 	TCPCheck (class in lighthouse.checks.tcp)

U

 	

 	UnknownCommandError

 	UnknownServerError

 	

 	update_checks() (lighthouse.service.Service method)

 	update_ports() (lighthouse.service.Service method)

V

 	

 	validate_check_config() (lighthouse.check.Check class method)

 	

 	(lighthouse.checks.http.HTTPCheck class method)

 	(lighthouse.checks.tcp.TCPCheck class method)

 	(lighthouse.redis.check.RedisCheck class method)

 	validate_check_configs() (lighthouse.service.Service class method)

 	validate_config() (lighthouse.check.Check class method)

 	

 	(lighthouse.cluster.Cluster class method)

 	(lighthouse.configurable.Configurable class method)

 	(lighthouse.haproxy.balancer.HAProxy class method)

 	(lighthouse.log.config.Logging class method)

 	(lighthouse.service.Service class method)

 	

 	validate_dependencies() (lighthouse.checks.http.HTTPCheck class method)

 	

 	(lighthouse.checks.tcp.TCPCheck class method)

 	(lighthouse.haproxy.balancer.HAProxy class method)

 	(lighthouse.pluggable.Pluggable class method)

 	validate_proxies_config() (lighthouse.haproxy.balancer.HAProxy class method)

W

 	

 	wait_on_any() (in module lighthouse.events)

 	

 	wait_on_event() (in module lighthouse.events)

 Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

 _modules/lighthouse/balancer.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.balancer

import logging

from .pluggable import Pluggable

logger = logging.getLogger(__name__)

[docs]class Balancer(Pluggable):
 """
 Base class for load balancer definitions.

 The complexity of generating valid configuration content and updating
 the proper file(s) is left as details for subclasses so this base class
 remains incredibly simple.

 All subclasses are expected to implement a `sync_file` method that is
 called whenever an update to the topography of nodes happens.
 """

 config_subdirectory = "balancers"
 entry_point = "lighthouse.balancers"

[docs] def sync_file(self, clusters):
 """
 This method must take a list of clusters and update any and all
 relevant configuration files with valid config content for balancing
 requests for the given clusters.
 """
 raise NotImplementedError

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/log.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.log

import logging

from .context import ContextFilter

[docs]def setup(program):
 """
 Simple function that sets the program on the ContextFilter and returns
 the root logger.
 """
 ContextFilter.program = program

 return logging.getLogger()

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/events.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.events

import logging
import sys
import threading

import six

logger = logging.getLogger(__name__)

[docs]def wait_on_any(*events, **kwargs):
 """
 Helper method for waiting for any of the given threading events to be
 set.

 The standard threading lib doesn't include any mechanism for waiting on
 more than one event at a time so we have to monkey patch the events
 so that their `set()` and `clear()` methods fire a callback we can use
 to determine how a composite event should react.
 """
 timeout = kwargs.get("timeout")
 composite_event = threading.Event()

 if any([event.is_set() for event in events]):
 return

 def on_change():
 if any([event.is_set() for event in events]):
 composite_event.set()
 else:
 composite_event.clear()

 def patch(original):

 def patched():
 original()
 on_change()

 return patched

 for event in events:
 event.set = patch(event.set)
 event.clear = patch(event.clear)

 wait_on_event(composite_event, timeout=timeout)

[docs]def wait_on_event(event, timeout=None):
 """
 Waits on a single threading Event, with an optional timeout.

 This is here for compatibility reasons as python 2 can't reliably wait
 on an event without a timeout and python 3 doesn't define a `maxint`.
 """
 if timeout is not None:
 event.wait(timeout)
 return

 if six.PY2:
 # Thanks to a bug in python 2's threading lib, we can't simply call
 # .wait() with no timeout since it would wind up ignoring signals.
 while not event.is_set():
 event.wait(sys.maxint)
 else:
 event.wait()

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/node.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.node

import json
import logging
import socket

from .peer import Peer

logger = logging.getLogger(__name__)

[docs]class Node(object):
 """
 The class representing a member node of a cluster.

 Consists of a `port`, a `host` and a `peer`, plus methods for serializing
 and deserializing themselves so that they can be transmitted back and
 forth via discovery methods.
 """

 def __init__(self, host, ip, port, peer=None, metadata=None):
 self.port = port
 self.host = host
 self.ip = ip
 self.peer = peer or Peer.current()
 self.metadata = metadata or {}

 @property
 def name(self):
 """
 Simple property for "naming" a node via the host and port.
 """
 return self.host + ":" + str(self.port)

 @classmethod
[docs] def current(cls, service, port):
 """
 Returns a Node instance representing the current service node.

 Collects the host and IP information for the current machine and
 the port information from the given service.
 """
 host = socket.getfqdn()
 return cls(
 host=host,
 ip=socket.gethostbyname(host),
 port=port,
 metadata=service.metadata
)

[docs] def serialize(self):
 """
 Serializes the node data as a JSON map string.
 """
 return json.dumps({
 "port": self.port,
 "ip": self.ip,
 "host": self.host,
 "peer": self.peer.serialize() if self.peer else None,
 "metadata": json.dumps(self.metadata or {}, sort_keys=True),
 }, sort_keys=True)

 @classmethod
[docs] def deserialize(cls, value):
 """
 Creates a new Node instance via a JSON map string.

 Note that `port` and `ip` and are required keys for the JSON map,
 `peer` and `host` are optional. If `peer` is not present, the new Node
 instance will use the current peer. If `host` is not present, the
 hostname of the given `ip` is looked up.
 """
 if getattr(value, "decode", None):
 value = value.decode()

 logger.debug("Deserializing node data: '%s'", value)
 parsed = json.loads(value)

 if "port" not in parsed:
 raise ValueError("No port defined for node.")
 if "ip" not in parsed:
 raise ValueError("No IP address defined for node.")
 if "host" not in parsed:
 host, aliases, ip_list = socket.gethostbyaddr(parsed["ip"])
 parsed["host"] = socket.get_fqdn(host)
 if "peer" in parsed:
 peer = Peer.deserialize(parsed["peer"])
 else:
 peer = None

 return cls(
 parsed["host"], parsed["ip"], parsed["port"],
 peer=peer, metadata=parsed.get("metadata")
)

 def __eq__(self, other):
 """
 Nodes are considered equal if their IPs and ports both match.
 """
 return bool(self.ip == other.ip and self.port == other.port)

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/configurable.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.configurable

[docs]class Configurable(object):
 """
 Base class for targets configured by the config file watching system.

 Each subclass is expected to be able to validate and apply configuration
 dictionaries that come from config file content.
 """

 name = None

 # This attribute denotes that the config watching system should check
 # a subdirectory for this configurable's files.
 config_subdirectory = None

 @classmethod
[docs] def validate_config(cls, config):
 """
 Validates a given config, returns the validated config dictionary
 if valid, raises a ValueError for any invalid values.

 Subclasses are expected to define this method.
 """
 raise NotImplementedError

[docs] def apply_config(self, config):
 """
 Applies a given config to the subclass.

 Setting instance attributes, for example. Subclasses are expected
 to define this method.

 NOTE: It is *incredibly important* that this method be idempotent with
 regards to the instance.
 """
 raise NotImplementedError

 @classmethod
[docs] def from_config(cls, name, config):
 """
 Returns a Configurable instance with the given name and config.

 By default this is a simple matter of calling the constructor, but
 subclasses that are also `Pluggable` instances override this in order
 to check that the plugin is installed correctly first.
 """

 cls.validate_config(config)

 instance = cls()
 if not instance.name:
 instance.name = config.get("name", name)
 instance.apply_config(config)

 return instance

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/cluster.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.cluster

import logging

from .configurable import Configurable
from .balancer import Balancer

logger = logging.getLogger(__name__)

[docs]class Cluster(Configurable):
 """
 The class representing a cluster of member nodes in a service.

 A simple class that merely keeps a list of nodes and defines which
 discovery method is used to track said nodes.
 """

 config_subdirectory = "clusters"

 def __init__(self):
 self.discovery = None
 self.meta_cluster = None
 self.nodes = []

 @classmethod
[docs] def validate_config(cls, config):
 """
 Validates a config dictionary parsed from a cluster config file.

 Checks that a discovery method is defined and that at least one of
 the balancers in the config are installed and available.
 """
 if "discovery" not in config:
 raise ValueError("No discovery method defined.")

 installed_balancers = Balancer.get_installed_classes().keys()

 if not any([balancer in config for balancer in installed_balancers]):
 raise ValueError("No available balancer configs defined.")

[docs] def apply_config(self, config):
 """
 Sets the `discovery` and `meta_cluster` attributes, as well as the
 configured + available balancer attributes from a given validated
 config.
 """
 self.discovery = config["discovery"]
 self.meta_cluster = config.get("meta_cluster")
 for balancer_name in Balancer.get_installed_classes().keys():
 if balancer_name in config:
 setattr(self, balancer_name, config[balancer_name])

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/pluggable.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.pluggable

import logging
import pkg_resources

from .configurable import Configurable

logger = logging.getLogger(__name__)

[docs]class Pluggable(Configurable):
 """
 Base class for classes that can be defined via external plugins.

 Subclasses define their `entry_point` attribute and subsequent calls to
 `get_installed_classes` will look up any available classes associated
 with that endpoint.

 Entry points used by lighthouse can be found in `setup.py` in the root
 of the project.
 """

 # the "entry point" for a plugin (e.g. "lighthouse.checks")
 entry_point = None

 @classmethod
[docs] def validate_dependencies(cls):
 """
 Validates a plugin's external dependencies. Should return True if
 all dependencies are met and False if not.

 Subclasses are expected to define this method.
 """
 raise NotImplementedError

 @classmethod
[docs] def get_installed_classes(cls):
 """
 Iterates over installed plugins associated with the `entry_point` and
 returns a dictionary of viable ones keyed off of their names.

 A viable installed plugin is one that is both loadable *and* a subclass
 of the Pluggable subclass in question.
 """
 installed_classes = {}
 for entry_point in pkg_resources.iter_entry_points(cls.entry_point):
 try:
 plugin = entry_point.load()
 except ImportError as e:
 logger.error(
 "Could not load plugin %s: %s", entry_point.name, str(e)
)
 continue

 if not issubclass(plugin, cls):
 logger.error(
 "Could not load plugin %s:" +
 " %s class is not subclass of %s",
 entry_point.name, plugin.__class__.__name__, cls.__name__
)
 continue

 if not plugin.validate_dependencies():
 logger.error(
 "Could not load plugin %s:" +
 " %s class dependencies not met",
 entry_point.name, plugin.__name__
)
 continue

 installed_classes[entry_point.name] = plugin

 return installed_classes

 @classmethod
[docs] def from_config(cls, name, config):
 """
 Behaves like the base Configurable class's `from_config()` except this
 makes sure that the `Pluggable` subclass with the given name is
 actually a properly installed plugin first.
 """
 installed_classes = cls.get_installed_classes()

 if name not in installed_classes:
 raise ValueError("Unknown/unavailable %s" % cls.__name__.lower())

 pluggable_class = installed_classes[name]

 pluggable_class.validate_config(config)

 instance = pluggable_class()
 if not instance.name:
 instance.name = name
 instance.apply_config(config)

 return instance

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/discovery.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.discovery

import logging
import threading

from .pluggable import Pluggable

logger = logging.getLogger(__name__)

[docs]class Discovery(Pluggable):
 """
 Base class for discovery method plugins.

 Unlike the `Balancer` base class for load balancer plugins, this discovery
 method plugin has several methods that subclasses are expected to define.

 Subclasses are used for both the writer process *and* the reporter process
 so each subclass needs to be able to report on individual nodes as well
 as monitor and collect the status of all defined clusters.

 It is important that the various instances of lighthouse running on various
 machines agree with each other on the status of clusters so a distributed
 system with strong CP characteristics is recommended.
 """

 config_subdirectory = "discovery"
 entry_point = "lighthouse.discovery"

 def __init__(self):
 self.shutdown = threading.Event()

[docs] def connect(self):
 """
 Subclasses should define this method to handle any sort of connection
 establishment needed.
 """
 raise NotImplementedError

[docs] def disconnect(self):
 """
 This method is used to facilitate any shutting down operations needed
 by the subclass (e.g. closing connections and such).
 """
 raise NotImplementedError

[docs] def start_watching(self, cluster, should_update):
 """
 Method called whenever a new cluster is defined and must be monitored
 for changes to nodes.

 Once a cluster is being successfully watched that cluster *must* be
 added to the `self.watched_clusters` set!

 Whenever a change is detected, the given `should_update` threading
 event should be set.
 """
 raise NotImplementedError

[docs] def stop_watching(self, cluster):
 """
 This method should halt any of the monitoring started that would be
 started by a call to `start_watching()` with the same cluster.

 Once the cluster is no longer being watched that cluster *must* be
 removed from the `self.watched_clusters` set!
 """
 raise NotImplementedError

[docs] def report_up(self, service, port):
 """
 This method is used to denote that the given service present on the
 current machine should be considered up and available.
 """
 raise NotImplementedError

[docs] def report_down(self, service, port):
 """
 This method is used to denote that the given service present on the
 current machine should be considered down and unavailable.
 """
 raise NotImplementedError

[docs] def stop(self):
 """
 Simple method that sets the `shutdown` event and calls the subclass's
 `wind_down()` method.
 """
 self.shutdown.set()
 self.disconnect()

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 All modules for which code is available

		lighthouse.balancer

		lighthouse.check

		lighthouse.checks.http

		lighthouse.checks.tcp

		lighthouse.cluster

		lighthouse.configurable

		lighthouse.discovery

		lighthouse.events

		lighthouse.haproxy.balancer

		lighthouse.haproxy.config

		lighthouse.haproxy.control

		lighthouse.haproxy.stanzas.backend

		lighthouse.haproxy.stanzas.frontend

		lighthouse.haproxy.stanzas.meta

		lighthouse.haproxy.stanzas.peers

		lighthouse.haproxy.stanzas.proxy

		lighthouse.haproxy.stanzas.section

		lighthouse.haproxy.stanzas.stanza

		lighthouse.haproxy.stanzas.stats

		lighthouse.log

		lighthouse.log.cli

		lighthouse.log.config

		lighthouse.log.context

		lighthouse.node

		lighthouse.peer

		lighthouse.pluggable

		lighthouse.redis.check

		lighthouse.service

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/check.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.check

import collections
import logging
import itertools

from .pluggable import Pluggable

logger = logging.getLogger(__name__)

[docs]class Check(Pluggable):
 """
 Base class for service check plugins.

 Subclasses are expected to define a name for the check, plus methods for
 validating that any dependencies are present, the given config is valid,
 and of course performing the check itself.
 """

 entry_point = "lighthouse.checks"

 def __init__(self):
 self.host = None
 self.port = None

 self.rise = None
 self.fall = None

 self.results = deque()
 self.passing = False

 @classmethod
[docs] def validate_check_config(cls, config):
 """
 This method should return True if the given config is valid for the
 health check subclass, False otherwise.
 """
 raise NotImplementedError

[docs] def apply_check_config(self, config):
 """
 This method takes an already-validated configuration dictionary as its
 only argument.

 The method should set any attributes or state in the instance needed
 for performing the health check.
 """
 raise NotImplementedError

[docs] def perform(self):
 """
 This `perform()` is at the heart of the check. Subclasses must define
 this method to actually perform their check. If the check passes, the
 method should return True, otherwise False.

 Note that this method takes no arguments. Any sort of context required
 for performing a check should be handled by the config.
 """
 raise NotImplementedError

[docs] def run(self):
 """
 Calls the `perform()` method defined by subclasses and stores the
 result in a `results` deque.

 After the result is determined the `results` deque is analyzed to see
 if the `passing` flag should be updated. If the check was considered
 passing and the previous `self.fall` number of checks failed, the check
 is updated to not be passing. If the check was not passing and the
 previous `self.rise` number of checks passed, the check is updated to
 be considered passing.
 """
 logger.debug("Running %s check", self.name)

 try:
 result = self.perform()
 except Exception:
 logger.exception("Error while performing %s check", self.name)
 result = False

 logger.debug("Result: %s", result)

 self.results.append(result)
 if self.passing and not any(self.last_n_results(self.fall)):
 logger.info(
 "%s check failed %d time(s), no longer passing.",
 self.name, self.fall,
)
 self.passing = False
 if not self.passing and all(self.last_n_results(self.rise)):
 logger.info(
 "%s check passed %d time(s), is now passing.",
 self.name, self.rise
)
 self.passing = True

[docs] def last_n_results(self, n):
 """
 Helper method for returning a set number of the previous check results.
 """
 return list(
 itertools.islice(
 self.results, len(self.results) - n, len(self.results)
)
)

[docs] def apply_config(self, config):
 """
 Sets attributes based on the given config.

 Also adjusts the `results` deque to either expand (padding itself with
 False results) or contract (by removing the oldest results) until it
 matches the required length.
 """
 self.rise = int(config["rise"])
 self.fall = int(config["fall"])

 self.apply_check_config(config)

 if self.results.maxlen == max(self.rise, self.fall):
 return

 results = list(self.results)
 while len(results) > max(self.rise, self.fall):
 results.pop(0)
 while len(results) < max(self.rise, self.fall):
 results.insert(0, False)

 self.results = deque(
 results,
 maxlen=max(self.rise, self.fall)
)

 @classmethod
[docs] def validate_config(cls, config):
 """
 Validates that required config entries are present.

 Each check requires a `host`, `port`, `rise` and `fall` to be
 configured.

 The rise and fall variables are integers denoting how many times a
 check must pass before being considered passing and how many times a
 check must fail before being considered failing.
 """
 if "rise" not in config:
 raise ValueError("No 'rise' configured")
 if "fall" not in config:
 raise ValueError("No 'fall' configured")

 cls.validate_check_config(config)

[docs]class deque(collections.deque):
 """
 Custom collections.deque subclass for 2.6 compatibility.

 The python 2.6 version of the deque class doesn't support referring to
 the `maxlen` attribute.
 """

 def __init__(self, iterable=(), maxlen=None):
 self._maxlen = maxlen
 super(deque, self).__init__(iterable=iterable, maxlen=maxlen)

 @property
 def maxlen(self):
 return self._maxlen

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_images/soa_node.png

_images/lighthouse.png

_images/meta_api_haproxy.png
Guese Sossionrate Seasions
Cur [Wax | Umit | Cor Mex | Umit | Cur | Max | Limt | Tol | Lbfot
sprocietsota000 o o | o o o o | o
sprocets028000 o o | o o o o [o
Backena o o o o o o o o
T
‘ausse Sossionrate Sesions
Cur [Mex | Lt | Cur | Wax Umi | Cur | Max | Lmk Tom | LbTel
Backena o o o o o o o o o o
T
Guese Sossionrate Sossions
Cur [Wax | Umt | Cur | Max | Umi | Cur | Mex | Limk | Tow | LbTot
wigets02:000 o o | o o o o | o o o
widgesot8000 o o | o o o o [o ° °
Backena o o o o o o o o ° °

_images/webapp_haproxy.png
2pp01:8000

app028002

appo28001

Backen

_images/api_cluster.png

_images/simple_example.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_modules/lighthouse/haproxy/control.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.haproxy.control

import collections
import errno
import logging
import os
import re
import socket
import subprocess

from lighthouse.peer import Peer

SOCKET_BUFFER_SIZE = 8192

version_re = re.compile('.*(?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+).*')
first_cap_re = re.compile('(.)([A-Z][a-z]+)')
all_cap_re = re.compile('([a-z0-9])([A-Z])')

logger = logging.getLogger(__name__)

[docs]class HAProxyControl(object):
 """
 Class used to control a running HAProxy process.

 Includes basic functionality for soft restarts as well as gathering info
 about the HAProxy process and its active nodes, plus methods for enabling
 or disabling nodes on the fly.

 Also allows for sending commands to the HAProxy control socket itself.
 """

 def __init__(self, config_file_path, socket_file_path, pid_file_path):
 self.config_file_path = config_file_path
 self.socket_file_path = socket_file_path
 self.pid_file_path = pid_file_path

 self.peer = Peer.current()

[docs] def restart(self):
 """
 Performs a soft reload of the HAProxy process.
 """
 version = self.get_version()

 command = [
 "haproxy",
 "-f", self.config_file_path, "-p", self.pid_file_path
]
 if version and version >= (1, 5, 0):
 command.extend(["-L", self.peer.name])
 if os.path.exists(self.pid_file_path):
 with open(self.pid_file_path) as fd:
 command.extend(["-sf", fd.read().replace("\n", "")])

 try:
 output = subprocess.check_output(command)
 except subprocess.CalledProcessError as e:
 logger.error("Failed to restart HAProxy: %s", str(e))
 return

 if output:
 logging.error("haproxy says: %s", output)

 logger.info("Gracefully restarted HAProxy.")

[docs] def get_version(self):
 """
 Returns a tuple representing the installed HAProxy version.

 The value of the tuple is (<major>, <minor>, <patch>), e.g. if HAProxy
 version 1.5.3 is installed, this will return `(1, 5, 3)`.
 """
 command = ["haproxy", "-v"]
 try:
 output = subprocess.check_output(command)
 version_line = output.split("\n")[0]
 except subprocess.CalledProcessError as e:
 logger.error("Could not get HAProxy version: %s", str(e))
 return None

 match = version_re.match(version_line)
 if not match:
 logger.error("Could not parse version from '%s'", version_line)
 return None

 version = (
 int(match.group("major")),
 int(match.group("minor")),
 int(match.group("patch"))
)

 logger.debug("Got HAProxy version: %s", version)

 return version

[docs] def get_info(self):
 """
 Parses the output of a "show info" HAProxy command and returns a
 simple dictionary of the results.
 """
 info_response = self.send_command("show info")

 if not info_response:
 return {}

 def convert_camel_case(string):
 return all_cap_re.sub(
 r'\1_\2',
 first_cap_re.sub(r'\1_\2', string)
).lower()

 return dict(
 (convert_camel_case(label), value)
 for label, value in [
 line.split(": ")
 for line in info_response.split("\n")
]
)

[docs] def get_active_nodes(self):
 """
 Returns a dictionary of lists, where the key is the name of a service
 and the list includes all active nodes associated with that service.
 """
 # the -1 4 -1 args are the filters <proxy_id> <type> <server_id>,
 # -1 for all proxies, 4 for servers only, -1 for all servers
 stats_response = self.send_command("show stat -1 4 -1")
 if not stats_response:
 return []

 lines = stats_response.split("\n")
 fields = lines.pop(0).split(",")
 # the first field is the service name, which we key off of so
 # it's not included in individual node records
 fields.pop(0)

 active_nodes = collections.defaultdict(list)

 for line in lines:
 values = line.split(",")
 service_name = values.pop(0)
 active_nodes[service_name].append(
 dict(
 (fields[i], values[i])
 for i in range(len(fields))
)
)

 return active_nodes

[docs] def enable_node(self, service_name, node_name):
 """
 Enables a given node name for the given service name via the
 "enable server" HAProxy command.
 """
 logger.info("Enabling server %s/%s", service_name, node_name)
 return self.send_command(
 "enable server %s/%s" % (service_name, node_name)
)

[docs] def disable_node(self, service_name, node_name):
 """
 Disables a given node name for the given service name via the
 "disable server" HAProxy command.
 """
 logger.info("Disabling server %s/%s", service_name, node_name)
 return self.send_command(
 "disable server %s/%s" % (service_name, node_name)
)

[docs] def send_command(self, command):
 """
 Sends a given command to the HAProxy control socket.

 Returns the response from the socket as a string.

 If a known error response (e.g. "Permission denied.") is given then
 the appropriate exception is raised.
 """
 logger.debug("Connecting to socket %s", self.socket_file_path)
 sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
 try:
 sock.connect(self.socket_file_path)
 except IOError as e:
 if e.errno == errno.ECONNREFUSED:
 logger.error("Connection refused. Is HAProxy running?")
 return
 else:
 raise

 sock.sendall((command + "\n").encode())

 response = b""
 while True:
 try:
 chunk = sock.recv(SOCKET_BUFFER_SIZE)
 if chunk:
 response += chunk
 else:
 break
 except IOError as e:
 if e.errno not in (errno.EAGAIN, errno.EINTR):
 raise

 sock.close()

 return self.process_command_response(command, response)

[docs] def process_command_response(self, command, response):
 """
 Takes an HAProxy socket command and its response and either raises
 an appropriate exception or returns the formatted response.
 """
 if response.startswith(b"Unknown command."):
 raise UnknownCommandError(command)
 if response == b"Permission denied.\n":
 raise PermissionError(command)
 if response == b"No such backend.\n":
 raise UnknownServerError(command)

 response = response.decode()
 return response.rstrip("\n")

[docs]class HAProxyControlError(Exception):
 """
 Base exception for HAProxyControl-related actions.
 """
 pass

[docs]class UnknownCommandError(HAProxyControlError):
 """
 Exception raised if an unrecognized command was sent to the HAProxy socket.
 """
 pass

[docs]class PermissionError(HAProxyControlError):
 """
 Exception denoting that the HAProxy control socket does not have proper
 authentication level for executing a given command.

 For example, if the socket is set up with a a level lower than "admin",
 the enable/disable server commands will fail.
 """
 pass

[docs]class UnknownServerError(HAProxyControlError):
 """
 Exception raised if an enable/disable server command is executed against
 a backend that HAProxy doesn't know about.
 """
 pass

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_modules/lighthouse/haproxy/stanzas/frontend.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.haproxy.stanzas.frontend

from .stanza import Stanza

[docs]class FrontendStanza(Stanza):
 """
 Stanza subclass representing a "frontend" stanza.

 A frontend stanza defines an address to bind to an a backend to route
 traffic to. A cluster can defined custom lines via a "frontend" entry
 in their haproxy config dictionary.
 """

 def __init__(self, cluster, bind_address=None):
 super(FrontendStanza, self).__init__("frontend")
 self.header = "frontend %s" % cluster.name

 if not bind_address:
 bind_address = ""

 self.add_lines(cluster.haproxy.get("frontend", []))
 self.add_line("bind %s:%s" % (bind_address, cluster.haproxy["port"]))
 self.add_line("default_backend %s" % cluster.name)

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/haproxy/stanzas/meta.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.haproxy.stanzas.meta

import logging

from .stanza import Stanza

logger = logging.getLogger(__name__)

[docs]class MetaFrontendStanza(Stanza):
 """
 Stanza subclass representing a shared "meta" cluster frontend.

 These frontends just contain ACL directives for routing requests to
 separate cluster backends. If a member cluster does not have an ACL rule
 defined in its haproxy config an error is logged and the member cluster
 is skipped.
 """

 def __init__(self, name, port, lines, members, bind_address=None):
 super(MetaFrontendStanza, self).__init__("frontend")
 self.header = "frontend %s" % name

 if not bind_address:
 bind_address = ""

 self.add_line("bind %s:%s" % (bind_address, port))
 self.add_lines(lines)

 for cluster in members:
 if "acl" not in cluster.haproxy:
 logger.error(
 "Cluster %s is part of meta-cluster %s," +
 " but no acl rule defined.",
 cluster.name, name
)
 continue
 self.add_lines([
 "acl is_%s %s" % (cluster.name, cluster.haproxy["acl"]),
 "use_backend %s if is_%s" % (cluster.name, cluster.name)
])

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/haproxy/stanzas/peers.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.haproxy.stanzas.peers

from .stanza import Stanza

[docs]class PeersStanza(Stanza):
 """
 Stanza subclass representing a "peers" stanza.

 This stanza lists "peer" haproxy instances in a cluster, so that each
 instance can coordinate and share stick-table information. Useful for
 tracking cluster-wide stats.
 """

 def __init__(self, cluster):
 super(PeersStanza, self).__init__("peers")
 self.header = "peers " + cluster.name

 self.add_lines([
 "peer %s %s:%s" % (peer.name, peer.ip, peer.port)
 for peer in set([node.peer for node in cluster.nodes if node.peer])
])

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/haproxy/stanzas/section.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.haproxy.stanzas.section

[docs]class Section(object):
 """
 Represents a section of HAProxy config file stanzas.

 This is used to organize generated config file content and provide header
 comments for sections describing nature of the grouped-together stanzas.
 """

 def __init__(self, heading, *stanzas):
 self.heading = heading
 self.stanzas = stanzas
 if not self.stanzas:
 self.stanzas = []

 @property
 def header(self):
 return "\n".join([
 "#",
 "# %s" % self.heading,
 "#"
])

 def __str__(self):
 """
 Joins together the section header and stanza strings with space
 inbetween.
 """
 stanzas = list(self.stanzas)
 if not stanzas:
 stanzas = ["# No stanzas defined for this section."]

 return "\n\n".join(map(str, [self.header] + stanzas))

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/log/cli.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 		lighthouse.log »

 Source code for lighthouse.log.cli

import itertools
import logging

try:
 import colorama
 color_available = True # pragma: no cover
except ImportError:
 color_available = False

[docs]def color_string(color, string):
 """
 Colorizes a given string, if coloring is available.
 """
 if not color_available:
 return string

 return color + string + colorama.Fore.RESET

[docs]def color_for_level(level):
 """
 Returns the colorama Fore color for a given log level.

 If color is not available, returns None.
 """
 if not color_available:
 return None

 return {
 logging.DEBUG: colorama.Fore.WHITE,
 logging.INFO: colorama.Fore.BLUE,
 logging.WARNING: colorama.Fore.YELLOW,
 logging.ERROR: colorama.Fore.RED,
 logging.CRITICAL: colorama.Fore.MAGENTA
 }.get(level, colorama.Fore.WHITE)

[docs]def create_thread_color_cycle():
 """
 Generates a never-ending cycle of colors to choose from for individual
 threads.

 If color is not available, a cycle that repeats None every time is
 returned instead.
 """
 if not color_available:
 return itertools.cycle([None])

 return itertools.cycle(
 (
 colorama.Fore.CYAN,
 colorama.Fore.BLUE,
 colorama.Fore.MAGENTA,
 colorama.Fore.GREEN,
)
)

thread_colors = create_thread_color_cycle()
seen_thread_colors = {}

[docs]def color_for_thread(thread_id):
 """
 Associates the thread ID with the next color in the `thread_colors` cycle,
 so that thread-specific parts of a log have a consistent separate color.
 """
 if thread_id not in seen_thread_colors:
 seen_thread_colors[thread_id] = next(thread_colors)

 return seen_thread_colors[thread_id]

[docs]class CLIHandler(logging.StreamHandler, object):
 """
 Specialized StreamHandler that provides color output if the output is a
 terminal and the colorama library is available.
 """

 @property
 def is_tty(self):
 "Returns true if the handler's stream is a terminal."
 isatty = getattr(self.stream, 'isatty', None)
 return isatty and isatty()

[docs] def format(self, record):
 """
 Formats a given log record to include the timestamp, log level, thread
 ID and message. Colorized if coloring is available.
 """
 if not self.is_tty:
 return super(CLIHandler, self).format(record)

 level_abbrev = record.levelname[0]

 time_and_level = color_string(
 color_for_level(record.levelno),
 "[%(asctime)s " + level_abbrev + "]"
)
 thread = color_string(
 color_for_thread(record.thread),
 "[%(threadName)s]"
)
 formatter = logging.Formatter(
 time_and_level + thread + " %(message)s", "%Y-%m-%d %H:%M:%S"
)

 return formatter.format(record)

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/log/config.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 		lighthouse.log »

 Source code for lighthouse.log.config

import logging
import logging.config

from lighthouse.configurable import Configurable

log = logging.getLogger(__name__)

[docs]class Logging(Configurable):
 """
 Simple `Configurable` subclass that allows for runtime configuration of
 python's logging infrastructure.

 Since python provides a handy `dictConfig` function and our system already
 provides the watched file contents as dicts the work here is tiny.
 """

 name = "logging"

 @classmethod
[docs] def from_config(cls, name, config):
 """
 Override of the base `from_config()` method that returns `None` if
 the name of the config file isn't "logging".

 We do this in case this `Configurable` subclass winds up sharing the
 root of the config directory with other subclasses.
 """
 if name != cls.name:
 return

 return super(Logging, cls).from_config(name, config)

 @classmethod
[docs] def validate_config(cls, config):
 """
 The validation of a logging config is a no-op at this time, the call
 to dictConfig() when the config is applied will do the validation
 for us.
 """
 pass

[docs] def apply_config(self, config):
 """
 Simple application of the given config via a call to the `logging`
 module's `dictConfig()` method.
 """
 logging.config.dictConfig(config)

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/checks/http.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.checks.http

import logging

from six.moves import http_client as client

from lighthouse import check

logger = logging.getLogger(__name__)

[docs]class HTTPCheck(check.Check):
 """
 Simple check for HTTP services.

 Pings a configured uri on the host. The check passes if the response
 code is in the 2xx range.
 """

 name = "http"

 def __init__(self, *args, **kwargs):
 super(HTTPCheck, self).__init__(*args, **kwargs)

 self.uri = None
 self.use_https = None
 self.method = None

 @classmethod
[docs] def validate_dependencies(cls):
 """
 This check uses stdlib modules so dependencies are always present.
 """
 return True

 @classmethod
[docs] def validate_check_config(cls, config):
 """
 Validates the http check config. The "uri" key is required.
 """
 if "uri" not in config:
 raise ValueError("Missing uri.")

[docs] def apply_check_config(self, config):
 """
 Takes a validated config dictionary and sets the `uri`, `use_https`
 and `method` attributes based on the config's contents.
 """
 self.uri = config["uri"]
 self.use_https = config.get("https", False)
 self.method = config.get("method", "GET")

[docs] def perform(self):
 """
 Performs a simple HTTP request against the configured url and returns
 true if the response has a 2xx code.

 The url can be configured to use https via the "https" boolean flag
 in the config, as well as a custom HTTP method via the "method" key.

 The default is to not use https and the GET method.
 """
 if self.use_https:
 conn = client.HTTPSConnection(self.host, self.port)
 else:
 conn = client.HTTPConnection(self.host, self.port)

 conn.request(self.method, self.uri)

 response = conn.getresponse()

 conn.close()

 return bool(response.status >= 200 and response.status < 300)

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/checks/tcp.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.checks.tcp

import logging
import socket

from lighthouse import check, sockutils

SOCKET_BUFFER_SIZE = 4096

logger = logging.getLogger(__name__)

[docs]class TCPCheck(check.Check):
 """
 Service health check using TCP request/response messages.

 Sends a certain message to the configured port and passes if the response
 is an expected one.
 """

 name = "tcp"

 def __init__(self, *args, **kwargs):
 super(TCPCheck, self).__init__(*args, **kwargs)

 self.query = None
 self.expected_response = None

 @classmethod
[docs] def validate_dependencies(cls):
 """
 This check uses stdlib modules so dependencies are always present.
 """
 return True

 @classmethod
[docs] def validate_check_config(cls, config):
 """
 Ensures that a query and expected response are configured.
 """
 if "query" not in config and "response" in config:
 raise ValueError("Missing TCP query message.")
 if "response" not in config and "query" in config:
 raise ValueError("Missing expected TCP response message.")

[docs] def apply_check_config(self, config):
 """
 Takes the `query` and `response` fields from a validated config
 dictionary and sets the proper instance attributes.
 """
 self.query = config.get("query")
 self.expected_response = config.get("response")

[docs] def perform(self):
 """
 Performs a straightforward TCP request and response.

 Sends the TCP `query` to the proper host and port, and loops over the
 socket, gathering response chunks until a full line is acquired.

 If the response line matches the expected value, the check passes. If
 not, the check fails. The check will also fail if there's an error
 during any step of the send/receive process.
 """
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 sock.connect((self.host, self.port))

 # if no query/response is defined, a successful connection is a pass
 if not self.query:
 sock.close()
 return True

 try:
 sock.sendall(self.query)
 except Exception:
 logger.exception("Error sending TCP query message.")
 sock.close()
 return False

 response, extra = sockutils.get_response(sock)

 logger.debug("response: %s (extra: %s)", response, extra)

 if response != self.expected_response:
 logger.warn(
 "Response does not match expected value: %s (expected %s)",
 response, self.expected_response
)
 sock.close()
 return False

 sock.close()
 return True

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/haproxy/balancer.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.haproxy.balancer

import collections
import logging
import threading
import time

import six

from lighthouse.balancer import Balancer

from .config import HAProxyConfig
from .control import HAProxyControl
from .stanzas.stanza import Stanza
from .stanzas.proxy import ProxyStanza
from .stanzas.stats import StatsStanza

MIN_TIME_BETWEEN_RESTARTS = 2 # seconds

logger = logging.getLogger(__name__)

[docs]class HAProxy(Balancer):
 """
 The HAProxy balancer class.

 Leverages the HAProxy control, config and stanza-related classes in order
 to keep the HAProxy config file in sync with the services and nodes
 discovered.
 """

 name = "haproxy"

 def __init__(self, *args, **kwargs):
 super(HAProxy, self).__init__(*args, **kwargs)

 self.last_restart = 0
 self.restart_required = True
 self.restart_interval = MIN_TIME_BETWEEN_RESTARTS
 self.restart_lock = threading.RLock()

 self.haproxy_config_path = None
 self.config_file = None
 self.control = None

 @classmethod
[docs] def validate_dependencies(cls):
 """
 The HAProxy Balancer doesn't use any specific python libraries so there
 are no extra dependencies to check for.
 """
 return True

 @classmethod
[docs] def validate_config(cls, config):
 """
 Validates that a config file path and a control socket file path
 and pid file path are all present in the HAProxy config.
 """
 if "config_file" not in config:
 raise ValueError("No config file path given")
 if "socket_file" not in config:
 raise ValueError("No control socket path given")
 if "pid_file" not in config:
 raise ValueError("No PID file path given")
 if "stats" in config and "port" not in config["stats"]:
 raise ValueError("Stats interface defined, but no port given")
 if "proxies" in config:
 cls.validate_proxies_config(config["proxies"])

 return config

 @classmethod
[docs] def validate_proxies_config(cls, proxies):
 """
 Specific config validation method for the "proxies" portion of a
 config.

 Checks that each proxy defines a port and a list of `upstreams`,
 and that each upstream entry has a host and port defined.
 """
 for name, proxy in six.iteritems(proxies):
 if "port" not in proxy:
 raise ValueError("No port defined for proxy %s" % name)
 if "upstreams" not in proxy:
 raise ValueError(
 "No upstreams defined for proxy %s" % name
)
 for upstream in proxy["upstreams"]:
 if "host" not in upstream:
 raise ValueError(
 "No host defined for upstream in proxy %s" % name
)
 if "port" not in upstream:
 raise ValueError(
 "No port defined for upstream in proxy %s" % name
)

[docs] def apply_config(self, config):
 """
 Constructs HAProxyConfig and HAProxyControl instances based on the
 contents of the config.

 This is mostly a matter of constructing the configuration stanzas.
 """
 self.haproxy_config_path = config["config_file"]

 global_stanza = Stanza("global")
 global_stanza.add_lines(config.get("global", []))
 global_stanza.add_lines([
 "stats socket %s mode 600 level admin" % config["socket_file"],
 "stats timeout 2m"
])

 defaults_stanza = Stanza("defaults")
 defaults_stanza.add_lines(config.get("defaults", []))

 proxy_stanzas = [
 ProxyStanza(
 name, proxy["port"], proxy["upstreams"],
 proxy.get("options", []),
 proxy.get("bind_address")
)
 for name, proxy in six.iteritems(config.get("proxies", {}))
]

 stats_stanza = None
 if "stats" in config:
 stats_stanza = StatsStanza(
 config["stats"]["port"], config["stats"].get("uri", "/")
)
 for timeout in ("client", "connect", "server"):
 if timeout in config["stats"].get("timeouts", {}):
 stats_stanza.add_line(
 "timeout %s %d" % (
 timeout,
 config["stats"]["timeouts"][timeout]
)
)

 self.config_file = HAProxyConfig(
 global_stanza, defaults_stanza,
 proxy_stanzas=proxy_stanzas, stats_stanza=stats_stanza,
 meta_clusters=config.get("meta_clusters", {}),
 bind_address=config.get("bind_address")
)

 self.control = HAProxyControl(
 config["config_file"], config["socket_file"], config["pid_file"],
)

[docs] def sync_file(self, clusters):
 """
 Generates new HAProxy config file content and writes it to the
 file at `haproxy_config_path`.

 If a restart is not necessary the nodes configured in HAProxy will
 be synced on the fly. If a restart *is* necessary, one will be
 triggered.
 """
 logger.info("Updating HAProxy config file.")
 if not self.restart_required:
 self.sync_nodes(clusters)

 version = self.control.get_version()

 with open(self.haproxy_config_path, "w") as f:
 f.write(self.config_file.generate(clusters, version=version))

 if self.restart_required:
 with self.restart_lock:
 self.restart()

[docs] def restart(self):
 """
 Tells the HAProxy control object to restart the process.

 If it's been fewer than `restart_interval` seconds since the previous
 restart, it will wait until the interval has passed. This staves off
 situations where the process is constantly restarting, as it is
 possible to drop packets for a short interval while doing so.
 """
 delay = (self.last_restart - time.time()) + self.restart_interval

 if delay > 0:
 time.sleep(delay)

 self.control.restart()

 self.last_restart = time.time()
 self.restart_required = False

[docs] def sync_nodes(self, clusters):
 """
 Syncs the enabled/disabled status of nodes existing in HAProxy based
 on the given clusters.

 This is used to inform HAProxy of up/down nodes without necessarily
 doing a restart of the process.
 """
 logger.info("Syncing HAProxy backends.")

 current_nodes, enabled_nodes = self.get_current_nodes(clusters)

 for cluster_name, nodes in six.iteritems(current_nodes):
 for node in nodes:
 if node["svname"] in enabled_nodes[cluster_name]:
 command = self.control.enable_node
 else:
 command = self.control.disable_node

 try:
 response = command(cluster_name, node["svname"])
 except Exception:
 logger.exception("Error when enabling/disabling node")
 self.restart_required = True
 else:
 if response:
 logger.error(
 "Socket command for %s node %s failed: %s",
 cluster_name, node["svname"], response
)
 self.restart_required = True
 return

 logger.info("HAProxy nodes/servers synced.")

[docs] def get_current_nodes(self, clusters):
 """
 Returns two dictionaries, the current nodes and the enabled nodes.

 The current_nodes dictionary is keyed off of the cluster name and
 values are a list of nodes known to HAProxy.

 The enabled_nodes dictionary is also keyed off of the cluster name
 and values are list of *enabled* nodes, i.e. the same values as
 current_nodes but limited to servers currently taking traffic.
 """
 current_nodes = self.control.get_active_nodes()
 enabled_nodes = collections.defaultdict(list)

 for cluster in clusters:
 if not cluster.nodes:
 continue

 if cluster.name not in current_nodes:
 logger.debug(
 "New cluster '%s' added, restart required.",
 cluster.name
)
 self.restart_required = True

 for node in cluster.nodes:
 if node.name not in [
 current_node["svname"]
 for current_node in current_nodes.get(cluster.name, [])
]:
 logger.debug(
 "New node added to cluster '%s', restart required.",
 cluster.name
)
 self.restart_required = True

 enabled_nodes[cluster.name].append(node.name)

 return current_nodes, enabled_nodes

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/haproxy/config.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.haproxy.config

import collections
import datetime
import logging

import six

from .stanzas.section import Section
from .stanzas.meta import MetaFrontendStanza
from .stanzas.frontend import FrontendStanza
from .stanzas.backend import BackendStanza
from .stanzas.peers import PeersStanza

logger = logging.getLogger(__name__)

[docs]class HAProxyConfig(object):
 """
 Class for generating HAProxy config file content.

 Requires global and defaults stanzas to be passed, can optionally take
 a `stats_stanza` for enabling a stats portal.
 """

 def __init__(
 self,
 global_stanza, defaults_stanza,
 proxy_stanzas=None, stats_stanza=None, meta_clusters=None,
 bind_address=None
):
 self.global_stanza = global_stanza
 self.defaults_stanza = defaults_stanza
 self.proxy_stanzas = proxy_stanzas or []
 self.stats_stanza = stats_stanza
 self.meta_clusters = meta_clusters or {}
 self.bind_address = bind_address

[docs] def generate(self, clusters, version=None):
 """
 Generates HAProxy config file content based on a given list of
 clusters.
 """
 now = datetime.datetime.now()

 sections = [
 Section(
 "Auto-generated by Lighthouse (%s)" % now.strftime("%c"),
 self.global_stanza,
 self.defaults_stanza
)
]

 meta_stanzas = [
 MetaFrontendStanza(
 name, self.meta_clusters[name]["port"],
 self.meta_clusters[name].get("frontend", []), members,
 self.bind_address
)
 for name, members
 in six.iteritems(self.get_meta_clusters(clusters))
]
 frontend_stanzas = [
 FrontendStanza(cluster, self.bind_address)
 for cluster in clusters
 if "port" in cluster.haproxy
]
 backend_stanzas = [BackendStanza(cluster) for cluster in clusters]

 if version and version >= (1, 5, 0):
 peers_stanzas = [PeersStanza(cluster) for cluster in clusters]
 else:
 peers_stanzas = []

 sections.extend([
 Section("Frontend stanzas for ACL meta clusters", *meta_stanzas),
 Section("Per-cluster frontend definitions", *frontend_stanzas),
 Section("Per-cluster backend definitions", *backend_stanzas),
 Section("Per-cluster peer listings", *peers_stanzas),
 Section("Individual proxy definitions", *self.proxy_stanzas),
])
 if self.stats_stanza:
 sections.append(
 Section("Listener for stats web interface", self.stats_stanza)
)

 return "\n\n\n".join([str(section) for section in sections]) + "\n"

[docs] def get_meta_clusters(self, clusters):
 """
 Returns a dictionary keyed off of meta cluster names, where the values
 are lists of clusters associated with the meta cluster name.

 If a meta cluster name doesn't have a port defined in the
 `meta_cluster_ports` attribute an error is given and the meta cluster
 is removed from the mapping.
 """
 meta_clusters = collections.defaultdict(list)

 for cluster in clusters:
 if not cluster.meta_cluster:
 continue
 meta_clusters[cluster.meta_cluster].append(cluster)

 unconfigured_meta_clusters = [
 name for name in meta_clusters.keys()
 if name not in self.meta_clusters
]

 for name in unconfigured_meta_clusters:
 logger.error("Meta cluster %s not configured!")
 del meta_clusters[name]

 return meta_clusters

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/meta_api_haproxy.png
Guese Sossionrate Seasions
Cur [Wax | Umit | Cor Mex | Umit | Cur | Max | Limt | Tol | Lbfot
sprocietsota000 o o | o o o o | o
sprocets028000 o o | o o o o [o
Backena o o o o o o o o
T
‘ausse Sossionrate Sesions
Cur [Mex | Lt | Cur | Wax Umi | Cur | Max | Lmk Tom | LbTel
Backena o o o o o o o o o o
T
Guese Sossionrate Sossions
Cur [Wax | Umt | Cur | Max | Umi | Cur | Mex | Limk | Tow | LbTot
wigets02:000 o o | o o o o | o o o
widgesot8000 o o | o o o o [o ° °
Backena o o o o o o o o ° °

_static/file.png

_static/lighthouse.png

search.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_static/soa_node.png

_static/comment-bright.png

_static/up-pressed.png

_static/comment.png

_modules/lighthouse/peer.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.peer

import json
import socket

DEFAULT_PEER_PORT = 1024

[docs]class Peer(object):
 """
 This class represents a host running a lighthouse reporter.

 When a reporter script tells its discovery method that a node is up, it
 includes information about itself via this class so that writer scripts
 reading that information can coordinate their peers.

 This is helpful for HAProxy as a way to generate "peers" config stanzas
 so instances of HAProxy in a given cluster can share stick-table data.
 """

 def __init__(self, name, ip, port=None):
 self.name = name
 self.ip = ip
 self.port = port or DEFAULT_PEER_PORT

 @classmethod
[docs] def current(cls):
 """
 Helper method for getting the current peer of whichever host we're
 running on.
 """
 name = socket.getfqdn()
 ip = socket.gethostbyname(name)

 return cls(name, ip)

[docs] def serialize(self):
 """
 Serializes the Peer data as a simple JSON map string.
 """
 return json.dumps({
 "name": self.name,
 "ip": self.ip,
 "port": self.port
 }, sort_keys=True)

 @classmethod
[docs] def deserialize(cls, value):
 """
 Generates a Peer instance via a JSON string of the sort generated
 by `Peer.deserialize`.

 The `name` and `ip` keys are required to be present in the JSON map,
 if the `port` key is not present the default is used.
 """
 parsed = json.loads(value)

 if "name" not in parsed:
 raise ValueError("No peer name.")
 if "ip" not in parsed:
 raise ValueError("No peer IP.")
 if "port" not in parsed:
 parsed["port"] = DEFAULT_PEER_PORT

 return cls(parsed["name"], parsed["ip"], parsed["port"])

 def __hash__(self):
 """
 Hash method used to store peers in sets.

 Simply hashes the string <ip address>:<port>.
 """
 return hash(self.ip + ":" + str(self.port))

 def __eq__(self, other):
 """
 Peers are considered equal if their IP and port match.
 """
 return self.ip == other.ip and self.port == other.port

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/service.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.service

import collections
import logging

import six

from .configurable import Configurable
from .check import Check

logger = logging.getLogger(__name__)

[docs]class Service(Configurable):
 """
 Class representing a service provided by the current machine.

 This is a straightforward Configurable subclass, it defines what a valid
 configuration for a service is and applies them.
 """

 config_subdirectory = "services"

 def __init__(self):
 self.host = None
 self.ports = set()

 self.configured_ports = None

 self.discovery = None

 self.checks = collections.defaultdict(dict)
 self.check_interval = None

 self.is_up = collections.defaultdict(lambda: None)

 self.metadata = {}

 @classmethod
[docs] def validate_config(cls, config):
 """
 Runs a check on the given config to make sure that `port`/`ports` and
 `discovery` is defined.
 """
 if "discovery" not in config:
 raise ValueError("No discovery method defined.")

 if not any([item in config for item in ["port", "ports"]]):
 raise ValueError("No port(s) defined.")

 cls.validate_check_configs(config)

 @classmethod
[docs] def validate_check_configs(cls, config):
 """
 Config validation specific to the health check options.

 Verifies that checks are defined along with an interval, and calls
 out to the `Check` class to make sure each individual check's config
 is valid.
 """
 if "checks" not in config:
 raise ValueError("No checks defined.")
 if "interval" not in config["checks"]:
 raise ValueError("No check interval defined.")

 for check_name, check_config in six.iteritems(config["checks"]):
 if check_name == "interval":
 continue

 Check.from_config(check_name, check_config)

[docs] def apply_config(self, config):
 """
 Takes a given validated config dictionary and sets an instance
 attribute for each one.

 For check definitions, a Check instance is is created and a `checks`
 attribute set to a dictionary keyed off of the checks' names. If
 the Check instance has some sort of error while being created an error
 is logged and the check skipped.
 """
 self.host = config.get("host", "127.0.0.1")

 self.configured_ports = config.get("ports", [config.get("port")])

 self.discovery = config["discovery"]

 self.metadata = config.get("metadata", {})

 self.update_ports()

 self.check_interval = config["checks"]["interval"]

 self.update_checks(config["checks"])

[docs] def reset_status(self):
 """
 Sets the up/down status of the service ports to the default state.

 Useful for when the configuration is updated and the checks involved
 in determining the status might have changed.
 """
 self.is_up = collections.defaultdict(lambda: None)

[docs] def update_ports(self):
 """
 Sets the `ports` attribute to the set of valid port values set in
 the configuration.
 """
 ports = set()

 for port in self.configured_ports:
 try:
 ports.add(int(port))
 except ValueError:
 logger.error("Invalid port value: %s", port)
 continue

 self.ports = ports

[docs] def update_checks(self, check_configs):
 """
 Maintains the values in the `checks` attribute's dictionary. Each
 key in the dictionary is a port, and each value is a nested dictionary
 mapping each check's name to the Check instance.

 This method makes sure the attribute reflects all of the properly
 configured checks and ports. Removing no-longer-configured ports
 is left to the `run_checks` method.
 """
 for check_name, check_config in six.iteritems(check_configs):
 if check_name == "interval":
 continue

 for port in self.ports:
 try:
 check = Check.from_config(check_name, check_config)
 check.host = self.host
 check.port = port
 self.checks[port][check_name] = check
 except ValueError as e:
 logger.error(
 "Error when configuring check '%s' for service %s: %s",
 check_name, self.name, str(e)
)
 continue

[docs] def run_checks(self):
 """
 Iterates over the configured ports and runs the checks on each one.

 Returns a two-element tuple: the first is the set of ports that
 transitioned from down to up, the second is the set of ports that
 transitioned from up to down.

 Also handles the case where a check for a since-removed port is run,
 marking the port as down regardless of the check's result and removing
 the check(s) for the port.
 """
 came_up = set()
 went_down = set()

 for port in self.ports:
 checks = self.checks[port].values()

 if not checks:
 logger.warn("No checks defined for self: %s", self.name)

 for check in checks:
 check.run()

 checks_pass = all([check.passing for check in checks])

 if self.is_up[port] in (False, None) and checks_pass:
 came_up.add(port)
 self.is_up[port] = True
 elif self.is_up[port] in (True, None) and not checks_pass:
 went_down.add(port)
 self.is_up[port] = False

 for unused_port in set(self.checks.keys()) - self.ports:
 went_down.add(unused_port)
 del self.checks[unused_port]

 return came_up, went_down

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/log/context.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 		lighthouse.log »

 Source code for lighthouse.log.context

import logging

[docs]class ContextFilter(logging.Filter):
 """
 Simple `logging.Filter` subclass that adds a `program` attribute to
 each `LogRecord`.

 The attribute's value comes from the "program" class attribute.
 """

 program = None

[docs] def filter(self, record):
 """
 Sets the `program` attribute on the record. Always returns `True` as
 we're not actually filtering any records, just enhancing them.
 """
 record.program = self.program
 return True

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/redis/check.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.redis.check

from __future__ import absolute_import

import logging

from lighthouse.checks.tcp import TCPCheck

logger = logging.getLogger(__name__)

[docs]class RedisCheck(TCPCheck):
 """
 Redis service checker.

 Pings a redis server to make sure that it's available.
 """

 name = "redis"

 @classmethod
[docs] def validate_check_config(cls, config):
 """
 The base Check class assures that a host and port are configured so
 this method is a no-op.
 """
 pass

[docs] def apply_check_config(self, config):
 """
 This method doesn't actually use any configuration data, as the query
 and response for redis are already established.
 """
 self.query = "PING"
 self.expected_response = "PONG"

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_static/simple_example.png

_static/webapp_haproxy.png
2pp01:8000

app028002

appo28001

Backen

_static/api_cluster.png

_static/down.png

_modules/lighthouse/haproxy/stanzas/stanza.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.haproxy.stanzas.stanza

import logging

from ..directives import directives_by_section

logger = logging.getLogger(__name__)

[docs]class Stanza(object):
 """
 Subclass for config file stanzas.

 In an HAProxy config file, a stanza is in the form of::

 stanza header
 directive
 directive
 directive

 Stanza instances have a `header` attribute for the header and a list of
 `lines`, one for each directive line.
 """

 def __init__(self, section_name):
 self.section_name = section_name
 self.header = section_name
 self.lines = []

[docs] def add_lines(self, lines):
 """
 Simple helper method for adding multiple lines at once.
 """
 for line in lines:
 self.add_line(line)

[docs] def add_line(self, line):
 """
 Adds a given line string to the list of lines, validating the line
 first.
 """
 if not self.is_valid_line(line):
 logger.warn(
 "Invalid line for %s section: '%s'",
 self.section_name, line
)
 return

 self.lines.append(line)

[docs] def is_valid_line(self, line):
 """
 Validates a given line against the associated "section" (e.g. 'global'
 or 'frontend', etc.) of a stanza.

 If a line represents a directive that shouldn't be within the stanza
 it is rejected. See the `directives.json` file for a condensed look
 at valid directives based on section.
 """
 adjusted_line = line.strip().lower()

 return any([
 adjusted_line.startswith(directive)
 for directive in directives_by_section[self.section_name]
])

 def __str__(self):
 """
 Returns the string representation of a Stanza, meant for use in
 config file content.

 if no lines are defined an empty string is returned.
 """
 if not self.lines:
 return ""

 return self.header + "\n" + "\n".join([
 "\t" + line
 for line in self.lines
])

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/haproxy/stanzas/backend.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.haproxy.stanzas.backend

import logging

from .stanza import Stanza

logger = logging.getLogger(__name__)

[docs]class BackendStanza(Stanza):
 """
 Stanza subclass representing a "backend" stanza.

 A backend stanza defines the nodes (or "servers") belonging to a given
 cluster as well as how routing/load balancing between those nodes happens.

 A given cluster can define custom directives via a list of lines in their
 haproxy config with the key "backend".
 """

 def __init__(self, cluster):
 super(BackendStanza, self).__init__("backend")
 self.header = "backend %s" % cluster.name

 if not cluster.nodes:
 logger.warning(
 "Cluster %s has no nodes, backend stanza may be blank.",
 cluster.name
)

 backend_lines = cluster.haproxy.get("backend", [])
 self.add_lines(backend_lines)
 for node in cluster.nodes:
 http_mode = bool("mode http" in backend_lines)
 self.add_line(
 "server %(name)s %(host)s:%(port)s %(cookie)s %(options)s" % {
 "name": node.name,
 "host": node.ip,
 "port": node.port,
 "cookie": "cookie " + node.name if http_mode else "",
 "options": cluster.haproxy.get("server_options", "")
 }
)

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/haproxy/stanzas/proxy.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.haproxy.stanzas.proxy

from .stanza import Stanza

[docs]class ProxyStanza(Stanza):
 """
 Stanza for independent proxy directives.

 These are used to add simple proxying to a system, e.g. communicating
 with a third party service via a dedicated internal machine with a white-
 listed IP.
 """

 def __init__(self, name, port, upstreams, options=None, bind_address=None):
 super(ProxyStanza, self).__init__("listen")
 self.header = "listen " + name

 if not bind_address:
 bind_address = ""

 self.add_line("bind %s:%s" % (bind_address, port))

 if options:
 self.add_lines(options)

 for upstream in upstreams:
 max_conn = ""
 if "max_conn" in upstream:
 max_conn = "maxconn " + str(upstream["max_conn"])

 self.add_line(
 "server %(name)s %(name)s %(maxconn)s" % {
 "name": ":".join(
 [upstream["host"], str(upstream["port"])]
),
 "maxconn": max_conn
 }
)

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

_modules/lighthouse/haproxy/stanzas/stats.html

 Navigation

 		
 index

 		
 modules |

 		lighthouse 1.0.0 documentation »

 		Module code »

 Source code for lighthouse.haproxy.stanzas.stats

from .stanza import Stanza

[docs]class StatsStanza(Stanza):
 """
 Stanza subclass representing a "listen" stanza specifically for the
 HAProxy stats feature.

 Takes an optional uri parameter that defaults to the root uri.
 """

 def __init__(self, port, uri="/"):
 super(StatsStanza, self).__init__("listen")
 self.header = "listen stats :" + str(port)

 self.add_lines([
 "mode http",
 "stats enable",
 "stats uri " + uri,
])

 © Copyright 2014-2016, William Glass.
 Created using Sphinx 1.3.5.

